2,043 research outputs found

    Scientific Workflow Applications on Amazon EC2

    Get PDF
    The proliferation of commercial cloud computing providers has generated significant interest in the scientific computing community. Much recent research has attempted to determine the benefits and drawbacks of cloud computing for scientific applications. Although clouds have many attractive features, such as virtualization, on-demand provisioning, and "pay as you go" usage-based pricing, it is not clear whether they are able to deliver the performance required for scientific applications at a reasonable price. In this paper we examine the performance and cost of clouds from the perspective of scientific workflow applications. We use three characteristic workflows to compare the performance of a commercial cloud with that of a typical HPC system, and we analyze the various costs associated with running those workflows in the cloud. We find that the performance of clouds is not unreasonable given the hardware resources provided, and that performance comparable to HPC systems can be achieved given similar resources. We also find that the cost of running workflows on a commercial cloud can be reduced by storing data in the cloud rather than transferring it from outside

    Executing Large Scale Scientific Workflows in Public Clouds

    Get PDF
    Scientists in different fields, such as high-energy physics, earth science, and astronomy are developing large-scale workflow applications. In many use cases, scientists need to run a set of interrelated but independent workflows (i.e., workflow ensembles) for the entire scientific analysis. As a workflow ensemble usually contains many sub-workflows in each of which hundreds or thousands of jobs exist with precedence constraints, the execution of such a workflow ensemble makes a great concern with cost even using elastic and pay-as-you-go cloud resources. In this thesis, we develop a set of methods to optimize the execution of large-scale scientific workflows in public clouds with both cost and deadline constraints with a two-step approach. Firstly, we present a set of methods to optimize the execution of scientific workflow in public clouds, with the Montage astronomical mosaic engine running on Amazon EC2 as an example. Secondly, we address three main challenges in realizing benefits of using public clouds when executing large-scale workflow ensembles: (1) execution coordination, (2) resource provisioning, and (3) data staging. To this end, we develop a new pulling-based workflow execution system with a profiling-based resource provisioning strategy. Our results show that our solution system can achieve 80% speed-up, by removing scheduling overhead, compared to the well-known Pegasus workflow management system when running scientific workflow ensembles. Besides, our evaluation using Montage workflow ensembles on around 1000-core Amazon EC2 clusters has demonstrated the efficacy of our resource provisioning strategy in terms of cost effectiveness within deadline

    High-Performance Cloud Computing: A View of Scientific Applications

    Full text link
    Scientific computing often requires the availability of a massive number of computers for performing large scale experiments. Traditionally, these needs have been addressed by using high-performance computing solutions and installed facilities such as clusters and super computers, which are difficult to setup, maintain, and operate. Cloud computing provides scientists with a completely new model of utilizing the computing infrastructure. Compute resources, storage resources, as well as applications, can be dynamically provisioned (and integrated within the existing infrastructure) on a pay per use basis. These resources can be released when they are no more needed. Such services are often offered within the context of a Service Level Agreement (SLA), which ensure the desired Quality of Service (QoS). Aneka, an enterprise Cloud computing solution, harnesses the power of compute resources by relying on private and public Clouds and delivers to users the desired QoS. Its flexible and service based infrastructure supports multiple programming paradigms that make Aneka address a variety of different scenarios: from finance applications to computational science. As examples of scientific computing in the Cloud, we present a preliminary case study on using Aneka for the classification of gene expression data and the execution of fMRI brain imaging workflow.Comment: 13 pages, 9 figures, conference pape

    HPC Cloud for Scientific and Business Applications: Taxonomy, Vision, and Research Challenges

    Full text link
    High Performance Computing (HPC) clouds are becoming an alternative to on-premise clusters for executing scientific applications and business analytics services. Most research efforts in HPC cloud aim to understand the cost-benefit of moving resource-intensive applications from on-premise environments to public cloud platforms. Industry trends show hybrid environments are the natural path to get the best of the on-premise and cloud resources---steady (and sensitive) workloads can run on on-premise resources and peak demand can leverage remote resources in a pay-as-you-go manner. Nevertheless, there are plenty of questions to be answered in HPC cloud, which range from how to extract the best performance of an unknown underlying platform to what services are essential to make its usage easier. Moreover, the discussion on the right pricing and contractual models to fit small and large users is relevant for the sustainability of HPC clouds. This paper brings a survey and taxonomy of efforts in HPC cloud and a vision on what we believe is ahead of us, including a set of research challenges that, once tackled, can help advance businesses and scientific discoveries. This becomes particularly relevant due to the fast increasing wave of new HPC applications coming from big data and artificial intelligence.Comment: 29 pages, 5 figures, Published in ACM Computing Surveys (CSUR

    Cloudbus Toolkit for Market-Oriented Cloud Computing

    Full text link
    This keynote paper: (1) presents the 21st century vision of computing and identifies various IT paradigms promising to deliver computing as a utility; (2) defines the architecture for creating market-oriented Clouds and computing atmosphere by leveraging technologies such as virtual machines; (3) provides thoughts on market-based resource management strategies that encompass both customer-driven service management and computational risk management to sustain SLA-oriented resource allocation; (4) presents the work carried out as part of our new Cloud Computing initiative, called Cloudbus: (i) Aneka, a Platform as a Service software system containing SDK (Software Development Kit) for construction of Cloud applications and deployment on private or public Clouds, in addition to supporting market-oriented resource management; (ii) internetworking of Clouds for dynamic creation of federated computing environments for scaling of elastic applications; (iii) creation of 3rd party Cloud brokering services for building content delivery networks and e-Science applications and their deployment on capabilities of IaaS providers such as Amazon along with Grid mashups; (iv) CloudSim supporting modelling and simulation of Clouds for performance studies; (v) Energy Efficient Resource Allocation Mechanisms and Techniques for creation and management of Green Clouds; and (vi) pathways for future research.Comment: 21 pages, 6 figures, 2 tables, Conference pape
    • …
    corecore