316,648 research outputs found

    Introductory programming: a systematic literature review

    Get PDF
    As computing becomes a mainstream discipline embedded in the school curriculum and acts as an enabler for an increasing range of academic disciplines in higher education, the literature on introductory programming is growing. Although there have been several reviews that focus on specific aspects of introductory programming, there has been no broad overview of the literature exploring recent trends across the breadth of introductory programming. This paper is the report of an ITiCSE working group that conducted a systematic review in order to gain an overview of the introductory programming literature. Partitioning the literature into papers addressing the student, teaching, the curriculum, and assessment, we explore trends, highlight advances in knowledge over the past 15 years, and indicate possible directions for future research

    Abstract State Machines 1988-1998: Commented ASM Bibliography

    Get PDF
    An annotated bibliography of papers which deal with or use Abstract State Machines (ASMs), as of January 1998.Comment: Also maintained as a BibTeX file at http://www.eecs.umich.edu/gasm

    Two Decades of Maude

    Get PDF
    This paper is a tribute to José Meseguer, from the rest of us in the Maude team, reviewing the past, the present, and the future of the language and system with which we have been working for around two decades under his leadership. After reviewing the origins and the language's main features, we present the latest additions to the language and some features currently under development. This paper is not an introduction to Maude, and some familiarity with it and with rewriting logic are indeed assumed.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Incremental and Modular Context-sensitive Analysis

    Full text link
    Context-sensitive global analysis of large code bases can be expensive, which can make its use impractical during software development. However, there are many situations in which modifications are small and isolated within a few components, and it is desirable to reuse as much as possible previous analysis results. This has been achieved to date through incremental global analysis fixpoint algorithms that achieve cost reductions at fine levels of granularity, such as changes in program lines. However, these fine-grained techniques are not directly applicable to modular programs, nor are they designed to take advantage of modular structures. This paper describes, implements, and evaluates an algorithm that performs efficient context-sensitive analysis incrementally on modular partitions of programs. The experimental results show that the proposed modular algorithm shows significant improvements, in both time and memory consumption, when compared to existing non-modular, fine-grain incremental analysis techniques. Furthermore, thanks to the proposed inter-modular propagation of analysis information, our algorithm also outperforms traditional modular analysis even when analyzing from scratch.Comment: 56 pages, 27 figures. To be published in Theory and Practice of Logic Programming. v3 corresponds to the extended version of the ICLP2018 Technical Communication. v4 is the revised version submitted to Theory and Practice of Logic Programming. v5 (this one) is the final author version to be published in TPL

    Emergent requirements for supporting introductory programming

    Get PDF
    The problems associated with learning and teaching first year University Computer Science (CS1) programming classes are summarized showing that various support tools and techniques have been developed and evaluated. From this review of applicable support the paper derives ten requirements that a support tool should have in order to improve CS1 student success rate with respect to learning and understanding

    Using Graph Transformations and Graph Abstractions for Software Verification

    Get PDF
    In this paper we describe our intended approach for the verification of software written in imperative programming languages. We base our approach on model checking of graph transition systems, where each state is a graph and the transitions are specified by graph transformation rules. We believe that graph transformation is a very suitable technique to model the execution semantics of languages with dynamic memory allocation. Furthermore, such representation allows us to investigate the use of graph abstractions, which can mitigate the combinatorial explosion inherent to model checking. In addition to presenting our planned approach, we reason about its feasibility, and, by providing a brief comparison to other existing methods, we highlight the benefits and drawbacks that are expected

    Connecting Undergraduate Students as Partners in Computer Science Teaching and Research

    Get PDF
    Connecting undergraduate students as partners can lead to the enhancement of the undergraduate experience and allow students to see the different sides of the university. Such holistic perspectives may better inform academic career choices and postgraduate study. Furthermore, student involvement in course development has many potential benefits. This paper outlines a framework for connecting research and teaching within Computer Science- though this is applicable across other disciplines. Three case studies are considered to illustrate the approach. The first case study involves students in their honours’ stage (level 6, typically 3rd year) project, the second an undergraduate intern between stages 5 and 6, and finally, a MSc (level 7) project. All three case studies have actively involved students in core parts of the University’s teaching and research activities, producing usable software systems to support these efforts. We consider this as a continuing engagement process to enhance the undergraduate learning experience within Computer Science
    • …
    corecore