368,793 research outputs found

    Preface

    Get PDF
    This volume collects papers presented at the 30th Annual Conference on Mathematical Foundations of Programming Semantics (MFPS XXX), held on the campus of Cornell University, Ithaca, New York, USA, from Thursday, June 12 through Sunday, June 15, 2014. The MFPS conferences are devoted to those areas of mathematics, logic, and computer science that are related to models of computation in general and to the semantics of programming languages in particular. The series particularly stresses providing a forum where researchers in mathematics and computer science can meet and exchange ideas about problems of common interest. As the series also strives to maintain breadth in its scope, the conference strongly encourages participation by researchers in neighboring areas

    Semi-automatic assessment of unrestrained Java code: a Library, a DSL, and a workbench to assess exams and exercises

    Full text link
    © ACM 2015. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in http://dx.doi.org/10.1145/2729094.2742615Automated marking of multiple-choice exams is of great interest in university courses with a large number of students. For this reason, it has been systematically implanted in almost all universities. Automatic assessment of source code is however less extended. There are several reasons for that. One reason is that almost all existing systems are based on output comparison with a gold standard. If the output is the expected, the code is correct. Otherwise, it is reported as wrong, even if there is only one typo in the code. Moreover, why it is wrong remains a mystery. In general, assessment tools treat the code as a black box, and they only assess the externally observable behavior. In this work we introduce a new code assessment method that also verifies properties of the code, thus allowing to mark the code even if it is only partially correct. We also report about the use of this system in a real university context, showing that the system automatically assesses around 50% of the work.This work has been partially supported by the EU (FEDER) and the Spanish Ministerio de EconomĂ­ay Competitividad (SecretarĂ­a de Estado de InvestigaciĂłn, Desarrollo e InnovaciĂłn) under grant TIN2013-44742-C4-1-R and by the Generalitat Valenciana under grant PROMETEOII2015/013. David Insa was partially supported by the Spanish Ministerio de EducaciĂłn under FPU grant AP2010-4415.Insa Cabrera, D.; Silva, J. (2015). Semi-automatic assessment of unrestrained Java code: a Library, a DSL, and a workbench to assess exams and exercises. ACM. https://doi.org/10.1145/2729094.2742615SK. A Rahman and M. Jan Nordin. A review on the static analysis approach in the automated programming assessment systems. In National Conference on Programming 07, 2007.K. Ala-Mutka. A survey of automated assessment approaches for programming assignments. In Computer Science Education, volume 15, pages 83--102, 2005.C. Beierle, M. Kula, and M. Widera. Automatic analysis of programming assignments. In Proc. der 1. E-Learning Fachtagung Informatik (DeLFI '03), volume P-37, pages 144--153, 2003.J. Biggs and C. Tang. Teaching for Quality Learning at University : What the Student Does (3rd Edition). In Open University Press, 2007.P. Denny, A. Luxton-Reilly, E. Tempero, and J. Hendrickx. CodeWrite: Supporting student-driven practice of java. In Proceedings of the 42nd ACM technical symposium on Computer science education, pages 09--12, 2011.R. Hendriks. Automatic exam correction. 2012.P. Ihantola, T. Ahoniemi, V. Karavirta, and O. Seppala. Review of recent systems for automatic assessment of programming assignments. In Proceedings of the 10th Koli Calling International Conference on Computing Education Research, pages 86--93, 2010.H. Kitaya and U. Inoue. An online automated scoring system for Java programming assignments. In International Journal of Information and Education Technology, volume 6, pages 275--279, 2014.M.-J. Laakso, T. Salakoski, A. Korhonen, and L. Malmi. Automatic assessment of exercises for algorithms and data structures - a case study with TRAKLA2. In Proceedings of Kolin Kolistelut/Koli Calling - Fourth Finnish/Baltic Sea Conference on Computer Science Education, pages 28--36, 2004.Y. Liang, Q. Liu, J. Xu, and D. Wang. The recent development of automated programming assessment. In Computational Intelligence and Software Engineering, pages 1--5, 2009.K. A. Naudé, J. H. Greyling, and D. Vogts. Marking student programs using graph similarity. In Computers & Education, volume 54, pages 545--561, 2010.A. Pears, S. Seidman, C. Eney, P. Kinnunen, and L. Malmi. Constructing a core literature for computing education research. In SIGCSE Bulletin, volume 37, pages 152--161, 2005.F. Prados, I. Boada, J. Soler, and J. Poch. Automatic generation and correction of technical exercices. In International Conference on Engineering and Computer Education (ICECE 2005), 2005.M. Supic, K. Brkic, T. Hrkac, Z. Mihajlovic, and Z. Kalafatic. Automatic recognition of handwritten corrections for multiple-choice exam answer sheets. In Information and Communication Technology, Electronics and Microelectronics (MIPRO), pages 1136--1141, 2014.S. Tung, T. Lin, and Y. Lin. An exercise management system for teaching programming. In Journal of Software, 2013.T. Wang, X. Su, Y. Wang, and P. Ma. Semantic similarity-based grading of student programs. In Information and Software Technology, volume 49, pages 99--107, 2007

    Computational Thinking Education in K–12

    Get PDF
    A guide to computational thinking education, with a focus on artificial intelligence literacy and the integration of computing and physical objects. Computing has become an essential part of today's primary and secondary school curricula. In recent years, K–12 computer education has shifted from computer science itself to the broader perspective of computational thinking (CT), which is less about technology than a way of thinking and solving problems—“a fundamental skill for everyone, not just computer scientists,” in the words of Jeanette Wing, author of a foundational article on CT. This volume introduces a variety of approaches to CT in K–12 education, offering a wide range of international perspectives that focus on artificial intelligence (AI) literacy and the integration of computing and physical objects. The book first offers an overview of CT and its importance in K–12 education, covering such topics as the rationale for teaching CT; programming as a general problem-solving skill; and the “phenomenon-based learning” approach. It then addresses the educational implications of the explosion in AI research, discussing, among other things, the importance of teaching children to be conscientious designers and consumers of AI. Finally, the book examines the increasing influence of physical devices in CT education, considering the learning opportunities offered by robotics. Contributors Harold Abelson, Cynthia Breazeal, Karen Brennan, Michael E. Caspersen, Christian Dindler, Daniella DiPaola, Nardie Fanchamps, Christina Gardner-McCune, Mark Guzdial, Kai Hakkarainen, Fredrik Heintz, Paul Hennissen, H. Ulrich Hoppe, Ole Sejer Iversen, Siu-Cheung Kong, Wai-Ying Kwok, Sven Manske, Jesús Moreno-León, Blakeley H. Payne, Sini Riikonen, Gregorio Robles, Marcos Román-González, Pirita Seitamaa-Hakkarainen, Ju-Ling Shih, Pasi Silander, Lou Slangen, Rachel Charlotte Smith, Marcus Specht, Florence R. Sullivan, David S. Touretzk

    Abstract State Machines 1988-1998: Commented ASM Bibliography

    Get PDF
    An annotated bibliography of papers which deal with or use Abstract State Machines (ASMs), as of January 1998.Comment: Also maintained as a BibTeX file at http://www.eecs.umich.edu/gasm

    Introductory programming: a systematic literature review

    Get PDF
    As computing becomes a mainstream discipline embedded in the school curriculum and acts as an enabler for an increasing range of academic disciplines in higher education, the literature on introductory programming is growing. Although there have been several reviews that focus on specific aspects of introductory programming, there has been no broad overview of the literature exploring recent trends across the breadth of introductory programming. This paper is the report of an ITiCSE working group that conducted a systematic review in order to gain an overview of the introductory programming literature. Partitioning the literature into papers addressing the student, teaching, the curriculum, and assessment, we explore trends, highlight advances in knowledge over the past 15 years, and indicate possible directions for future research

    Two Decades of Maude

    Get PDF
    This paper is a tribute to José Meseguer, from the rest of us in the Maude team, reviewing the past, the present, and the future of the language and system with which we have been working for around two decades under his leadership. After reviewing the origins and the language's main features, we present the latest additions to the language and some features currently under development. This paper is not an introduction to Maude, and some familiarity with it and with rewriting logic are indeed assumed.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    A Field Guide to Genetic Programming

    Get PDF
    xiv, 233 p. : il. ; 23 cm.Libro ElectrónicoA Field Guide to Genetic Programming (ISBN 978-1-4092-0073-4) is an introduction to genetic programming (GP). GP is a systematic, domain-independent method for getting computers to solve problems automatically starting from a high-level statement of what needs to be done. Using ideas from natural evolution, GP starts from an ooze of random computer programs, and progressively refines them through processes of mutation and sexual recombination, until solutions emerge. All this without the user having to know or specify the form or structure of solutions in advance. GP has generated a plethora of human-competitive results and applications, including novel scientific discoveries and patentable inventions. The authorsIntroduction -- Representation, initialisation and operators in Tree-based GP -- Getting ready to run genetic programming -- Example genetic programming run -- Alternative initialisations and operators in Tree-based GP -- Modular, grammatical and developmental Tree-based GP -- Linear and graph genetic programming -- Probalistic genetic programming -- Multi-objective genetic programming -- Fast and distributed genetic programming -- GP theory and its applications -- Applications -- Troubleshooting GP -- Conclusions.Contents xi 1 Introduction 1.1 Genetic Programming in a Nutshell 1.2 Getting Started 1.3 Prerequisites 1.4 Overview of this Field Guide I Basics 2 Representation, Initialisation and GP 2.1 Representation 2.2 Initialising the Population 2.3 Selection 2.4 Recombination and Mutation Operators in Tree-based 3 Getting Ready to Run Genetic Programming 19 3.1 Step 1: Terminal Set 19 3.2 Step 2: Function Set 20 3.2.1 Closure 21 3.2.2 Sufficiency 23 3.2.3 Evolving Structures other than Programs 23 3.3 Step 3: Fitness Function 24 3.4 Step 4: GP Parameters 26 3.5 Step 5: Termination and solution designation 27 4 Example Genetic Programming Run 4.1 Preparatory Steps 29 4.2 Step-by-Step Sample Run 31 4.2.1 Initialisation 31 4.2.2 Fitness Evaluation Selection, Crossover and Mutation Termination and Solution Designation Advanced Genetic Programming 5 Alternative Initialisations and Operators in 5.1 Constructing the Initial Population 5.1.1 Uniform Initialisation 5.1.2 Initialisation may Affect Bloat 5.1.3 Seeding 5.2 GP Mutation 5.2.1 Is Mutation Necessary? 5.2.2 Mutation Cookbook 5.3 GP Crossover 5.4 Other Techniques 32 5.5 Tree-based GP 39 6 Modular, Grammatical and Developmental Tree-based GP 47 6.1 Evolving Modular and Hierarchical Structures 47 6.1.1 Automatically Defined Functions 48 6.1.2 Program Architecture and Architecture-Altering 50 6.2 Constraining Structures 51 6.2.1 Enforcing Particular Structures 52 6.2.2 Strongly Typed GP 52 6.2.3 Grammar-based Constraints 53 6.2.4 Constraints and Bias 55 6.3 Developmental Genetic Programming 57 6.4 Strongly Typed Autoconstructive GP with PushGP 59 7 Linear and Graph Genetic Programming 61 7.1 Linear Genetic Programming 61 7.1.1 Motivations 61 7.1.2 Linear GP Representations 62 7.1.3 Linear GP Operators 64 7.2 Graph-Based Genetic Programming 65 7.2.1 Parallel Distributed GP (PDGP) 65 7.2.2 PADO 67 7.2.3 Cartesian GP 67 7.2.4 Evolving Parallel Programs using Indirect Encodings 68 8 Probabilistic Genetic Programming 8.1 Estimation of Distribution Algorithms 69 8.2 Pure EDA GP 71 8.3 Mixing Grammars and Probabilities 74 9 Multi-objective Genetic Programming 75 9.1 Combining Multiple Objectives into a Scalar Fitness Function 75 9.2 Keeping the Objectives Separate 76 9.2.1 Multi-objective Bloat and Complexity Control 77 9.2.2 Other Objectives 78 9.2.3 Non-Pareto Criteria 80 9.3 Multiple Objectives via Dynamic and Staged Fitness Functions 80 9.4 Multi-objective Optimisation via Operator Bias 81 10 Fast and Distributed Genetic Programming 83 10.1 Reducing Fitness Evaluations/Increasing their Effectiveness 83 10.2 Reducing Cost of Fitness with Caches 86 10.3 Parallel and Distributed GP are Not Equivalent 88 10.4 Running GP on Parallel Hardware 89 10.4.1 Master–slave GP 89 10.4.2 GP Running on GPUs 90 10.4.3 GP on FPGAs 92 10.4.4 Sub-machine-code GP 93 10.5 Geographically Distributed GP 93 11 GP Theory and its Applications 97 11.1 Mathematical Models 98 11.2 Search Spaces 99 11.3 Bloat 101 11.3.1 Bloat in Theory 101 11.3.2 Bloat Control in Practice 104 III Practical Genetic Programming 12 Applications 12.1 Where GP has Done Well 12.2 Curve Fitting, Data Modelling and Symbolic Regression 12.3 Human Competitive Results – the Humies 12.4 Image and Signal Processing 12.5 Financial Trading, Time Series, and Economic Modelling 12.6 Industrial Process Control 12.7 Medicine, Biology and Bioinformatics 12.8 GP to Create Searchers and Solvers – Hyper-heuristics xiii 12.9 Entertainment and Computer Games 127 12.10The Arts 127 12.11Compression 128 13 Troubleshooting GP 13.1 Is there a Bug in the Code? 13.2 Can you Trust your Results? 13.3 There are No Silver Bullets 13.4 Small Changes can have Big Effects 13.5 Big Changes can have No Effect 13.6 Study your Populations 13.7 Encourage Diversity 13.8 Embrace Approximation 13.9 Control Bloat 13.10 Checkpoint Results 13.11 Report Well 13.12 Convince your Customers 14 Conclusions Tricks of the Trade A Resources A.1 Key Books A.2 Key Journals A.3 Key International Meetings A.4 GP Implementations A.5 On-Line Resources 145 B TinyGP 151 B.1 Overview of TinyGP 151 B.2 Input Data Files for TinyGP 153 B.3 Source Code 154 B.4 Compiling and Running TinyGP 162 Bibliography 167 Inde

    Connecting Undergraduate Students as Partners in Computer Science Teaching and Research

    Get PDF
    Connecting undergraduate students as partners can lead to the enhancement of the undergraduate experience and allow students to see the different sides of the university. Such holistic perspectives may better inform academic career choices and postgraduate study. Furthermore, student involvement in course development has many potential benefits. This paper outlines a framework for connecting research and teaching within Computer Science- though this is applicable across other disciplines. Three case studies are considered to illustrate the approach. The first case study involves students in their honours’ stage (level 6, typically 3rd year) project, the second an undergraduate intern between stages 5 and 6, and finally, a MSc (level 7) project. All three case studies have actively involved students in core parts of the University’s teaching and research activities, producing usable software systems to support these efforts. We consider this as a continuing engagement process to enhance the undergraduate learning experience within Computer Science

    The Parma Polyhedra Library: Toward a Complete Set of Numerical Abstractions for the Analysis and Verification of Hardware and Software Systems

    Get PDF
    Since its inception as a student project in 2001, initially just for the handling (as the name implies) of convex polyhedra, the Parma Polyhedra Library has been continuously improved and extended by joining scrupulous research on the theoretical foundations of (possibly non-convex) numerical abstractions to a total adherence to the best available practices in software development. Even though it is still not fully mature and functionally complete, the Parma Polyhedra Library already offers a combination of functionality, reliability, usability and performance that is not matched by similar, freely available libraries. In this paper, we present the main features of the current version of the library, emphasizing those that distinguish it from other similar libraries and those that are important for applications in the field of analysis and verification of hardware and software systems.Comment: 38 pages, 2 figures, 3 listings, 3 table
    • …
    corecore