15 research outputs found

    Towards Higher Precision Lattice QCD Results: Improved Scale Setting and Domain Decomposition Solvers

    Get PDF
    Gitter QCD strebt nach höherer Präzision. Hier untersuchen wir zwei kritische Punkte, die zur Genauigkeit von Gitter-Ergebnissen beitragen. Im ersten Teil kalibrieren wir Gitterabstände von QCD Simulationen mit 2 + 1 Arten (flavor) dynamischer Quarks. Dabei nutzen wir neue Messungen und eine mehrere Modelle für den chiralen- und Kontinuumslimes, um die Ergebnisse der 2017 durchgeführten Studie [1] zu verbessern. Der zweite Teil befasst sich mit Simulationsalgorithmen. Wir testen einen Algorithmus, der eine schnellere Lösung der Dirac-Gleichung verspricht. Wir analysieren die Anwendung des FETI-Algorithmus (Finite Element Tear and Interconnect) im Zusammenhang mit Gitter-QCD-Simulationen und vergleichen ihn mit anderen modernen Lösungsverfahren aus der Klasse der Domänendekompositionslösern. Wir untersuchen verschiedene Präkonditionierer und ihre Auswirkungen auf die Konvergenz der Lösung.Lattice QCD simulations strive for higher precision. Here, we study two critical points in the generation of high precision lattice results. In the first part, we calibrate the lattice spacings of QCD simulation with 2 + 1 flavors of dynamical fermions. We incorporate new measurements and use additional models for the chiral and continuum extrapolations to refine the result obtained in 2017 [1]. The second part focuses on simulation algorithms. We test an algorithm which promises faster solution of the Dirac equation. We analyze the application of the Finite Element Tear and Interconnect (FETI) algorithm in the context of lattice QCD simulations and compare it to other state-of-the-art domain decomposition solvers. We examine various preconditioners and their effects on the convergence of the solution

    Precision Light Flavor Physics from Lattice QCD

    Get PDF
    In this thesis we present three distinct contributions to the study of light flavor physics using the techniques of lattice QCD. These results are arranged into four self-contained papers. The first two papers concern global fits of the quark mass, lattice spacing, and finite volume dependence of the pseudoscalar meson masses and decay constants, computed in a series of lattice QCD simulations, to partially quenched SU(2) and SU(3) chiral perturbation theory (χPT). These fits determine a subset of the low energy constants of chiral perturbation theory — in some cases with increased precision, and in other cases for the first time — which, once determined, can be used to compute other observables and amplitudes in χPT. We also use our formalism to self-consistently probe the behavior of the (asymptotic) chiral expansion as a function of the quark masses by repeating the fits with different subsets of the data. The third paper concerns the first lattice QCD calculation of the semileptonic K0 → π −` +ν` (K`3) form factor at vanishing momentum transfer, f Kπ + (0), with physical mass domain wall quarks. The value of this form factor can be combined with a Standard Model analysis of the experimentally measured K0 → π −` +ν` decay rate to extract a precise value of the Cabibbo-Kobayashi-Maskawa (CKM) matrix element Vus, and to test unitarity of the CKM matrix. We also discuss lattice calculations of the pion and kaon decay constants, which can be used to extract Vud through an analogous Standard Model analysis of experimental constraints on leptonic pion and kaon decays. The final paper explores the recently proposed exact one flavor algorithm (EOFA). This algorithm has been shown to drastically reduce the memory footprint required to simulate single quark flavors on the lattice relative to the widely used rational hybrid Monte Carlo (RHMC) algorithm, while also offering modest O(20%) speed-ups. We independently derive the exact one flavor action, explore its equivalence to the RHMC action, and demonstrate that additional preconditioning techniques can be used to significantly accelerate EOFA simulations. We apply EOFA to the ongoing RBC/UKQCD calculation of the ∆I = 1/2 K → ππ decay amplitude, and demonstrate that, in this context, gauge field configurations can be generated a factor of 4.2 times faster using an EOFAbased simulation rather than the previous RHMC-based simulations. We expect that EOFA will help to significantly reduce the statistical error in the first-principles determination of the Standard Model CP-violation parameters ε and ε′ offered by the K → ππ calculation
    corecore