2 research outputs found

    Schur's Lemma for Coupled Reducibility and Coupled Normality

    Get PDF
    International audienceLet A={Aij}i,j∈I\mathcal A = \{A_{ij} \}_{i, j \in \mathcal I}, where I\mathcal I is an index set, be a doubly indexed family of matrices, where AijA_{ij} is ni×njn_i \times n_j. For each i∈Ii \in \mathcal I, let Vi\mathcal V_i be an nin_i-dimensional vector space. We say A\mathcal A is {\em reducible in the coupled sense} if there exist subspaces, Ui⊆Vi\mathcal U_i \subseteq \mathcal V_i, with Ui≠{0}\mathcal U_i \neq \{0\} for at least one i∈Ii \in \mathcal I, and Ui≠Vi\mathcal U_i \neq \mathcal V_i for at least one ii, such that Aij(Uj)⊆UiA_{ij} (\mathcal U_j) \subseteq \mathcal U_i for all~i,ji, j. Let B={Bij}i,j∈I\mathcal B = \{B_{ij} \}_{i, j \in \mathcal I} also be a doubly indexed family of matrices, where BijB_{ij} is mi×mjm_i \times m_j. For each i∈Ii \in \mathcal I, let XiX_i be a matrix of size ni×min_i \times m_i. Suppose AijXj=XiBijA_{ij} X_j = X_i B_{ij} for all~i,ji, j. We prove versions of Schur's Lemma for A,B\mathcal A, \mathcal B satisfying coupled irreducibility conditions. We also consider a refinement of Schur's Lemma for sets of normal matrices and prove corresponding versions for A,B\mathcal A, \mathcal B satisfying coupled normality and coupled irreducibility conditions
    corecore