117,424 research outputs found

    Scholarly Collaboration In Engineering Education: From Big-Data Scientometrics To User-Centered Software Design

    Get PDF
    Engineering education research has grown into a flourishing community with an-ever increasing number of publications and scholars. However, recent studies show that a significant amount of engineering education knowledge retains a clear disciplinary orientation. If the gaps in scholarly collaboration continue to be prevalent within the entire community, it will become increasingly difficult to sustain community memory. This will eventually inhibit the propagation of innovations and slow the movement of research findings into practice. This dissertation studies scholarly collaboration in the engineering education research community. It provides a clear characterization of collaboration problems and proposes potential solutions. The dissertation is composed of four studies. First, the dissertation recognizes gaps in scholarly collaboration in the engineering education research community. To achieve this goal, a bibliometric analysis based on 24,172 academic articles was performed to describe the anatomy of collaboration patterns. Second, the dissertation reviewed existing technologies that enhance communication and collaboration in engineering and science. This review elaborated and compared features in 12 popular social research network sites to examine how these features support scholarly communication and collaboration. Third, this dissertation attempted to understand engineering education scholarsā€Ÿ behaviors and needs related to scholarly collaboration. A grounded theory study was conducted to investigate engineering education scholarsā€Ÿ behaviors in developing collaboration and their technology usage. Finally, a user-centered software design was proposed as a technological solution that addressed community collaboration needs. Results show that the engineering education research community is at its early stage of forming a small world network relying primarily on a small number of key scholars in the community. Scholarsā€Ÿ disciplinary background, research areas, and geographical locations are factors that affect scholarly collaboration. To facilitate scholarly communication and collaboration, social research network sites started to be adopted by scholars in various disciplines. However, engineering education scholars still prefer face-to-face interactions, emails, and phone calls for connecting and collaborating with other scholars. Instead of connecting to other scholars online, the present study shows that scholars develop new connections and maintain existing connections mainly by attending academic conferences. Some of these connections may eventually develop into collaborative relationships. Therefore, one way to increase scholarly collaboration in engineering education is to help scholars better network with others during conferences. A new mobile/web application is designed in this dissertation to meet this user need. The diffusion of innovation theory and the small world network model suggest that a well-connected community has real advantages in disseminating information quickly and broadly among its members. It allows research innovations to produce greater impacts and to reach a broader range of audiences. It can also close the gap between scholars with different disciplinary backgrounds. This dissertation contributes to enhancing community awareness of the overall collaboration status in engineering education research. It informs policy making on how to improve collaboration and helps individual scientists recognize potential collaboration opportunities. It also guides the future development of communication and collaboration tools used in engineering education research

    The Archigram Archive

    Get PDF
    The Archigram archival project made the works of seminal experimental architectural group Archigram available free online for an academic and general audience. It was a major archival work, and a new kind of digital academic archive, displaying material held in different places around the world and variously owned. It was aimed at a wide online design community, discovering it through Google or social media, as well as a traditional academic audience. It has been widely acclaimed in both fields. The project has three distinct but interlinked aims: firstly to assess, catalogue and present the vast range of Archigram's prolific work, of which only a small portion was previously available; secondly to provide reflective academic material on Archigram and on the wider picture of their work presented; thirdly to develop a new type of non-ownership online archive, suitable for both academic research at the highest level and for casual public browsing. The project hybridised several existing methodologies. It combined practical archival and editorial methods for the recovery, presentation and contextualisation of Archigram's work, with digital web design and with the provision of reflective academic and scholarly material. It was designed by the EXP Research Group in the Department of Architecture in collaboration with Archigram and their heirs and with the Centre for Parallel Computing, School of Electronics and Computer Science, also at the University of Westminster. It was rated 'outstanding' in the AHRC's own final report and was shortlisted for the RIBA research awards in 2010. It received 40,000 users and more than 250,000 page views in its first two weeks live, taking the site into twitterā€™s Top 1000 sites, and a steady flow of visitors thereafter. Further statistics are included in the accompanying portfolio. This output will also be returned to by Murray Fraser for UCL

    Mining, Modeling, and Leveraging Multidimensional Web Metrics to Support Scholarly Communities

    Get PDF
    The significant proliferation of scholarly output and the emergence of multidisciplinary research areas are rendering the research environment increasingly complex. In addition, an increasing number of researchers are using academic social networks to discover and store scholarly content. The spread of scientific discourse and research activities across the web, especially on social media platforms, suggests that far-reaching changes are taking place in scholarly communication and the geography of science. This dissertation provides integrated techniques and methods designed to address the information overload problem facing scholarly environments and to enhance the research process. There are four main contributions in this dissertation. First, this study identifies, quantifies, and analyzes international researchersā€™ dynamic scholarly information behaviors, activities, and needs, especially after the emergence of social media platforms. The findings based on qualitative and quantitative analysis report new scholarly patterns and reveals differences between researchers according to academic status and discipline. Second, this study mines massive scholarly datasets, models diverse multidimensional non-traditional web-based indicators (altmetrics), and evaluates and predicts scholarly and societal impact at various levels. The results address some of the limitations of traditional citation-based metrics and broaden the understanding and utilization of altmetrics. Third, this study recommends scholarly venues semantically related to researchersā€™ current interests. The results provide important up-to-the-minute signals that represent a closer reflection of research interests than post-publication usage-based metrics. Finally, this study develops a new scholarly framework by supporting the construction of online scholarly communities and bibliographies through reputation-based social collaboration, through the introduction of a collaborative, self-promoting system for users to advance their participation through analysis of the quality, timeliness and quantity of contributions. The framework improves the precision and quality of social reference management systems. By analyzing and modeling digital footprints, this dissertation provides a basis for tracking and documenting the impact of scholarship using new models that are more akin to reading breaking news than to watching a historical documentary made several years after the events it describes

    Scholarly collaboration across time zones

    Get PDF
    The barriers to global collaboration of yesteryear were, for example, country boundaries and time zones. Today however, in a world where communication is thriving on new technologies, these barriers have been overcome, not only by the technology itself, but also by the collaborators in a desire (and need) to extend knowledge, seize opportunities and build partnerships. This chapter reports on one such collaboration: a case study where the focus is the writing of a scholarly article between authors from Australia, England and South Africa. The challenges of different time zones, academic calendars, and managing the collaboration are outlined in this chapter. Findings from the case study suggests that the key elements of success are related to the individuals and project management techniques, and not the technology per se. The constructivist learning theory as well as the e-Moderation model are supported by this work and thus extend their application to the academic writing process

    Utilising content marketing metrics and social networks for academic visibility

    Get PDF
    There are numerous assumptions on research evaluation in terms of quality and relevance of academic contributions. Researchers are becoming increasingly acquainted with bibliometric indicators, including; citation analysis, impact factor, h-index, webometrics and academic social networking sites. In this light, this chapter presents a review of these concepts as it considers relevant theoretical underpinnings that are related to the content marketing of scholars. Therefore, this contribution critically evaluates previous papers that revolve on the subject of academic reputation as it deliberates on the individual researchersā€™ personal branding. It also explains how metrics are currently being used to rank the academic standing of journals as well as higher educational institutions. In a nutshell, this chapter implies that the scholarly impact depends on a number of factors including accessibility of publications, peer review of academic work as well as social networking among scholars.peer-reviewe

    Collaboration in sensor network research: an in-depth longitudinal analysis of assortative mixing patterns

    Get PDF
    Many investigations of scientific collaboration are based on statistical analyses of large networks constructed from bibliographic repositories. These investigations often rely on a wealth of bibliographic data, but very little or no other information about the individuals in the network, and thus, fail to illustrate the broader social and academic landscape in which collaboration takes place. In this article, we perform an in-depth longitudinal analysis of a relatively small network of scientific collaboration (N = 291) constructed from the bibliographic record of a research center involved in the development and application of sensor network and wireless technologies. We perform a preliminary analysis of selected structural properties of the network, computing its range, configuration and topology. We then support our preliminary statistical analysis with an in-depth temporal investigation of the assortative mixing of selected node characteristics, unveiling the researchers' propensity to collaborate preferentially with others with a similar academic profile. Our qualitative analysis of mixing patterns offers clues as to the nature of the scientific community being modeled in relation to its organizational, disciplinary, institutional, and international arrangements of collaboration.Comment: Scientometrics (In press

    Libraries and Graduate Education: Opportunities for Collaboration

    Get PDF

    Exploring the Use of Virtual Worlds as a Scientific Research Platform: The Meta-Institute for Computational Astrophysics (MICA)

    Get PDF
    We describe the Meta-Institute for Computational Astrophysics (MICA), the first professional scientific organization based exclusively in virtual worlds (VWs). The goals of MICA are to explore the utility of the emerging VR and VWs technologies for scientific and scholarly work in general, and to facilitate and accelerate their adoption by the scientific research community. MICA itself is an experiment in academic and scientific practices enabled by the immersive VR technologies. We describe the current and planned activities and research directions of MICA, and offer some thoughts as to what the future developments in this arena may be.Comment: 15 pages, to appear in the refereed proceedings of "Facets of Virtual Environments" (FaVE 2009), eds. F. Lehmann-Grube, J. Sablating, et al., ICST Lecture Notes Ser., Berlin: Springer Verlag (2009); version with full resolution color figures is available at http://www.mica-vw.org/wiki/index.php/Publication
    • ā€¦
    corecore