2,489 research outputs found

    Coexisting Parallelogram Method to Handle Jump Point on Hough Transform-based Clock Skew Measurement

    Get PDF
    In this paper, we improve the robustness of the Hough transform-based clock skew measurement on the occurrence of a jump point. The current Hough transform-based skew method uses angle (θ), thickness (ω), and region (β), to create a parallelogram that covers the densest part of an offset-set. However, the assumption that all offsets are considered to line up roughly in only one direction restricts the ability of the current method when handling an offset-set in which its densest part is located separately, the jump point condition. By acquiring the parallelogram from coexisting angle-region tuples at the beginning and the ending parts of the offset-set, we completed the ability of the Hough transform-based method to handle the jump point. When handling the jump point problem, the proposed coexisting parallelogram method could reach 0.35 ppm accuracy compared with tens ppm by the current methods

    On fast and accurate detection of unauthorized wireless access points using clock skews

    Get PDF
    Journal ArticleWe explore the use of clock skew of a wireless local area network access point (AP) as its fingerprint to detect unauthorized APs quickly and accurately. The main goal behind using clock skews is to overcome one of the major limitations of existing solutions-the inability to effectively detect Medium Access Control (MAC) address spoofing. We calculate the clock skew of an AP from the IEEE 802.11 Time Synchronization Function (TSF) time stamps sent out in the beacon/probe response frames. We use two different methods for this purpose-one based on linear programming and the other based on least-square fit. We supplement these methods with a heuristic for differentiating original packets from those sent by the fake APs. We collect TSF time stamp data from several APs in three different residential settings. Using our measurement data as well as data obtained from a large conference setting, we find that clock skews remain consistent over time for the same AP but vary significantly across APs. Furthermore, we improve the resolution of received time stamp of the frames and show that with this enhancement, our methodology can find clock skews very quickly, using 50-100 packets in most of the cases. We also discuss and quantify the impact of various external factors including temperature variation, virtualization, clock source selection, and NTP synchronization on clock skews. Our results indicate that the use of clock skews appears to be an efficient and robust method for detecting fake APs in wireless local area networks

    A Semantic-Based Middleware for Multimedia Collaborative Applications

    Get PDF
    The Internet growth and the performance increase of desktop computers have enabled large-scale distributed multimedia applications. They are expected to grow in demand and services and their traffic volume will dominate. Real-time delivery, scalability, heterogeneity are some requirements of these applications that have motivated a revision of the traditional Internet services, the operating systems structures, and the software systems for supporting application development. This work proposes a Java-based lightweight middleware for the development of large-scale multimedia applications. The middleware offers four services for multimedia applications. First, it provides two scalable lightweight protocols for floor control. One follows a centralized model that easily integrates with centralized resources such as a shared too], and the other is a distributed protocol targeted to distributed resources such as audio. Scalability is achieved by periodically multicasting a heartbeat that conveys state information used by clients to request the resource via temporary TCP connections. Second, it supports intra- and inter-stream synchronization algorithms and policies. We introduce the concept of virtual observer, which perceives the session as being in the same room with a sender. We avoid the need for globally synchronized clocks by introducing the concept of user\u27s multimedia presence, which defines a new manner for combining streams coming from multiple sites. It includes a novel algorithm for estimation and removal of clock skew. In addition, it supports event-driven asynchronous message reception, quality of service measures, and traffic rate control. Finally, the middleware provides support for data sharing via a resilient and scalable protocol for transmission of images that can dynamically change in content and size. The effectiveness of the middleware components is shown with the implementation of Odust, a prototypical sharing tool application built on top of the middleware

    A Regular Pattern of Timestamps Between Machines with Built-in System Time

    Get PDF
    This paper studied the effect of 15.6 ms time resolution where the collected timestamps are in a form of parallel dotted lines, instead of one straight line like in classical case. The dotted lines made the clock skew measurement of two devices to become incorrect as the measurement which normally follow the cluster of offsets but now follow the parallel dotted lines. Dotted lines pattern is required in order to understand how to correct the clock skew measurement on data containing dotted lines. To model the dotted lines pattern is through Dotted lines Grouping Method, a tools to find the characteristics of the dotted lines. The dotted lines grouping method was then tested data obtained from wired and wireless communication of two similar devices. The dotted line grouping method results equal maximum number of dot of 10 for both data, which indicated the robustness of the dotted lines grouping method

    Security Enhancements in Voice Over Ip Networks

    Get PDF
    Voice delivery over IP networks including VoIP (Voice over IP) and VoLTE (Voice over LTE) are emerging as the alternatives to the conventional public telephony networks. With the growing number of subscribers and the global integration of 4/5G by operations, VoIP/VoLTE as the only option for voice delivery becomes an attractive target to be abused and exploited by malicious attackers. This dissertation aims to address some of the security challenges in VoIP/VoLTE. When we examine the past events to identify trends and changes in attacking strategies, we find that spam calls, caller-ID spoofing, and DoS attacks are the most imminent threats to VoIP deployments. Compared to email spam, voice spam will be much more obnoxious and time consuming nuisance for human subscribers to filter out. Since the threat of voice spam could become as serious as email spam, we first focus on spam detection and propose a content-based approach to protect telephone subscribers\u27 voice mailboxes from voice spam. Caller-ID has long been used to enable the callee parties know who is calling, verify his identity for authentication and his physical location for emergency services. VoIP and other packet switched networks such as all-IP Long Term Evolution (LTE) network provide flexibility that helps subscribers to use arbitrary caller-ID. Moreover, interconnecting between IP telephony and other Circuit-Switched (CS) legacy telephone networks has also weakened the security of caller-ID systems. We observe that the determination of true identity of a calling device helps us in preventing many VoIP attacks, such as caller-ID spoofing, spamming and call flooding attacks. This motivates us to take a very different approach to the VoIP problems and attempt to answer a fundamental question: is it possible to know the type of a device a subscriber uses to originate a call? By exploiting the impreciseness of the codec sampling rate in the caller\u27s RTP streams, we propose a fuzzy rule-based system to remotely identify calling devices. Finally, we propose a caller-ID based public key infrastructure for VoIP and VoLTE that provides signature generation at the calling party side as well as signature verification at the callee party side. The proposed signature can be used as caller-ID trust to prevent caller-ID spoofing and unsolicited calls. Our approach is based on the identity-based cryptography, and it also leverages the Domain Name System (DNS) and proxy servers in the VoIP architecture, as well as the Home Subscriber Server (HSS) and Call Session Control Function (CSCF) in the IP Multimedia Subsystem (IMS) architecture. Using OPNET, we then develop a comprehensive simulation testbed for the evaluation of our proposed infrastructure. Our simulation results show that the average call setup delays induced by our infrastructure are hardly noticeable by telephony subscribers and the extra signaling overhead is negligible. Therefore, our proposed infrastructure can be adopted to widely verify caller-ID in telephony networks

    A Survey of Clock Synchronization Over Packet-Switched Networks

    Get PDF
    Clock synchronization is a prerequisite for the realization of emerging applications in various domains such as industrial automation and the intelligent power grid. This paper surveys the standardized protocols and technologies for providing synchronization of devices connected by packet-switched networks. A review of synchronization impairments and the state-of-the-art mechanisms to improve the synchronization accuracy is then presented. Providing microsecond to sub-microsecond synchronization accuracy under the presence of asymmetric delays in a cost-effective manner is a challenging problem, and still an open issue in many application scenarios. Further, security is of significant importance for systems where timing is critical. The security threats and solutions to protect exchanged synchronization messages are also discussed

    Computational structures for application specific VLSI processors

    Get PDF
    • …
    corecore