49,586 research outputs found

    Efficient resources assignment schemes for clustered multithreaded processors

    Get PDF
    New feature sizes provide larger number of transistors per chip that architects could use in order to further exploit instruction level parallelism. However, these technologies bring also new challenges that complicate conventional monolithic processor designs. On the one hand, exploiting instruction level parallelism is leading us to diminishing returns and therefore exploiting other sources of parallelism like thread level parallelism is needed in order to keep raising performance with a reasonable hardware complexity. On the other hand, clustering architectures have been widely studied in order to reduce the inherent complexity of current monolithic processors. This paper studies the synergies and trade-offs between two concepts, clustering and simultaneous multithreading (SMT), in order to understand the reasons why conventional SMT resource assignment schemes are not so effective in clustered processors. These trade-offs are used to propose a novel resource assignment scheme that gets and average speed up of 17.6% versus Icount improving fairness in 24%.Peer ReviewedPostprint (published version

    Textile structures modeled on a spider's net

    Get PDF
    Innovative textile fabrics modelled on the structure of a spider web can find application in the reinforcing of composites in conditions of where a centrifugal force occurs, for example rotational discs. At the Institute of Architecture of Textile at the Technical University of Łódź research work is carried out on mechanised production of woven fabrics whose struc- ture is modelled on a spider webweb. The paper presents a review of textile techniques and technologies from the point of view of their usefulness for producing fabrics of a flat round net type structure modelled on the structure of a spider web.There is also an analysis of the mechanical properties of the different textile structures from the point of view of fulfilling the requirements to operate in conditions which are affected by a centrifugal force

    High-Quality Shared-Memory Graph Partitioning

    Full text link
    Partitioning graphs into blocks of roughly equal size such that few edges run between blocks is a frequently needed operation in processing graphs. Recently, size, variety, and structural complexity of these networks has grown dramatically. Unfortunately, previous approaches to parallel graph partitioning have problems in this context since they often show a negative trade-off between speed and quality. We present an approach to multi-level shared-memory parallel graph partitioning that guarantees balanced solutions, shows high speed-ups for a variety of large graphs and yields very good quality independently of the number of cores used. For example, on 31 cores, our algorithm partitions our largest test instance into 16 blocks cutting less than half the number of edges than our main competitor when both algorithms are given the same amount of time. Important ingredients include parallel label propagation for both coarsening and improvement, parallel initial partitioning, a simple yet effective approach to parallel localized local search, and fast locality preserving hash tables
    corecore