32 research outputs found

    An Open Challenge Problem Repository for Systems Supporting Binders

    Get PDF
    A variety of logical frameworks support the use of higher-order abstract syntax in representing formal systems; however, each system has its own set of benchmarks. Even worse, general proof assistants that provide special libraries for dealing with binders offer a very limited evaluation of such libraries, and the examples given often do not exercise and stress-test key aspects that arise in the presence of binders. In this paper we design an open repository ORBI (Open challenge problem Repository for systems supporting reasoning with BInders). We believe the field of reasoning about languages with binders has matured, and a common set of benchmarks provides an important basis for evaluation and qualitative comparison of different systems and libraries that support binders, and it will help to advance the field.Comment: In Proceedings LFMTP 2015, arXiv:1507.0759

    Mechanizing type environments in weak HOAS

    Get PDF
    We provide a paradigmatic case study, about the formalization of System F<:'s type language in the proof assistant Coq. Our approach relies on weak HOAS, for the sake of producing a readable and concise representation of the object language. Actually, we present and discuss two encoding strategies for typing environments which yield a remarkable influence on the whole formalization. Then, on the one hand we develop System F<:'s metatheory, on the other hand we address the equivalence of the two approaches internally to Coq

    Abella: A System for Reasoning about Relational Specifications

    Get PDF
    International audienceThe Abella interactive theorem prover is based on an intuitionistic logic that allows for inductive and co-inductive reasoning over relations. Abella supports the λ-tree approach to treating syntax containing binders: it allows simply typed λ-terms to be used to represent such syntax and it provides higher-order (pattern) unification, the ∇ quantifier, and nominal constants for reasoning about these representations. As such, it is a suitable vehicle for formalizing the meta-theory of formal systems such as logics and programming languages. This tutorial exposes Abella incrementally, starting with its capabilities at a first-order logic level and gradually presenting more sophisticated features, ending with the support it offers to the two-level logic approach to meta-theoretic reasoning. Along the way, we show how Abella can be used prove theorems involving natural numbers, lists, and automata, as well as involving typed and untyped λ-calculi and the π-calculus

    Formal verification of the equivalence of system F and the pure type system L2

    Get PDF
    We develop a formal proof of the equivalence of two different variants of System F. The first is close to the original presentation where expressions are separated into distinct syntactic classes of types and terms. The second, L2 (also written as λ2), is a particular pure type system (PTS) where the notions of types and terms, and the associated expressions are unified in a single syntactic class. The employed notion of equivalence is a bidirectional reduction of the respective typing relations. A machine-verified proof of this result turns out to be surprisingly intricate, since the two variants noticeably differ in their expression languages, their type systems and the binding of local variables. Most of this work is executed in the Coq theorem prover and encompasses a general development of the PTS metatheory, an equivalence result for a stratified and a PTS variant of the simply typed λ-calculus as well as the subsequent extension to the full equivalence result for System F. We utilise nameless de Bruijn syntax with parallel substitutions for the representation of variable binding and develop an extended notion of context morphism lemmas as a structured proof method for this setting. We also provide two developments of the equivalence result in the proof systems Abella and Beluga, where we rely on higher-order abstract syntax (HOAS). This allows us to compare the three proof systems, as well as HOAS and de Bruijn for the purpose of developing formal metatheory.Wir präsentieren einen maschinell verifizierten Beweis der Äquivalenz zweier Darstellungen des Lambda-Kalküls System F. Die erste unterscheidet syntaktisch zwischen Termen und Typen und entspricht somit der geläufigen Form. Die zweite, L2 bzw. λ2, ist ein sog. Pure Type System (PTS), bei welchem alle Ausdrücke in einer syntaktischen Klasse zusammen fallen. Unser Äquivalenzbegriff ist eine bidirektionale Reduktion der jeweiligen Typrelationen. Ein formaler Beweis dieser Eigenschaft ist aufgrund der Unterschiede der Ausdruckssprachen, der Typrelationen und der Bindung lokaler Variablen überraschend anspruchsvoll. Der Hauptteil dieser Arbeit wurde in dem Beweisassistenten Coq entwickelt und umfasst eine Abhandlung der PTS Metatheorie, sowie einen Äquivalenzbeweis für das einfach getypte Lambda-Kalkül, welcher dann zu dem vollen Ergebnis für System F skaliert wird. Für die Darstellung lokaler Variablenbindung verwenden wir de Bruijn Syntax, gepaart mit parallelen Substitutionen. Außerdem entwickeln wir eine generalisierte Form von Kontext-Morphismen Lemmas, welche eine strukturierte Beweismethodik in diesem Umfeld liefern. Darüber hinaus betrachten wir zwei weitere Formalisierungen des Äquivalenzresultats in den Beweissystemen Abella und Beluga, welche beide höherstufige abstrakte Syntax (HOAS) zur Darstellung lokaler Bindung verwenden. Dies ermöglicht es uns, sowohl die drei Beweissysteme, als auch den HOAS und den de Bruijn Ansatz mit Hinblick auf die Entwicklung formaler Metatheorie zu vergleichen

    Bindings as bounded natural functors

    Get PDF
    We present a general framework for specifying and reasoning about syntax with bindings. Abstract binder types are modeled using a universe of functors on sets, subject to a number of operations that can be used to construct complex binding patterns and binding-aware datatypes, including non-well-founded and infinitely branching types, in a modular fashion. Despite not committing to any syntactic format, the framework is “concrete” enough to provide definitions of the fundamental operators on terms (free variables, alpha-equivalence, and capture-avoiding substitution) and reasoning and definition principles. This work is compatible with classical higher-order logic and has been formalized in the proof assistant Isabelle/HOL
    corecore