798 research outputs found

    Dynamic Visuomotor Transformation Involved with Remote Flying of a Plane Utilizes the ‘Mirror Neuron’ System

    Get PDF
    Brain regions involved with processing dynamic visuomotor representational transformation are investigated using fMRI. The perceptual-motor task involved flying (or observing) a plane through a simulated Red Bull Air Race course in first person and third person chase perspective. The third person perspective is akin to remote operation of a vehicle. The ability for humans to remotely operate vehicles likely has its roots in neural processes related to imitation in which visuomotor transformation is necessary to interpret the action goals in an egocentric manner suitable for execution. In this experiment for 3rd person perspective the visuomotor transformation is dynamically changing in accordance to the orientation of the plane. It was predicted that 3rd person remote flying, over 1st, would utilize brain regions composing the ‘Mirror Neuron’ system that is thought to be intimately involved with imitation for both execution and observation tasks. Consistent with this prediction differential brain activity was present for 3rd person over 1st person perspectives for both execution and observation tasks in left ventral premotor cortex, right dorsal premotor cortex, and inferior parietal lobule bilaterally (Mirror Neuron System) (Behaviorally: 1st>3rd). These regions additionally showed greater activity for flying (execution) over watching (observation) conditions. Even though visual and motor aspects of the tasks were controlled for, differential activity was also found in brain regions involved with tool use, motion perception, and body perspective including left cerebellum, temporo-occipital regions, lateral occipital cortex, medial temporal region, and extrastriate body area. This experiment successfully demonstrates that a complex perceptual motor real-world task can be utilized to investigate visuomotor processing. This approach (Aviation Cerebral Experimental Sciences ACES) focusing on direct application to lab and field is in contrast to standard methodology in which tasks and conditions are reduced to their simplest forms that are remote from daily life experience

    Rare variants implicate NMDA receptor signaling and cerebellar gene networks in risk for bipolar disorder

    Get PDF
    Bipolar disorder is an often-severe mental health condition characterized by alternation between extreme mood states of mania and depression. Despite strong heritability and the recent identification of 64 common variant risk loci of small effect, pathophysiological mechanisms remain unknown. Here, we analyzed genome sequences from 41 multiply-affected pedigrees and identified variants in 741 genes with nominally significant linkage or association with bipolar disorder. These 741 genes overlapped known risk genes for neurodevelopmental disorders and clustered within gene networks enriched for synaptic and nuclear functions. The top variant in this analysis - prioritized by statistical association, predicted deleteriousness, and network centrality - was a missense variant in the gene encoding D-amino acid oxidase (DAOG131V). Heterologous expression of DAOG131V in human cells resulted in decreased DAO protein abundance and enzymatic activity. In a knock-in mouse model of DAOG131, DaoG130V/+, we similarly found decreased DAO protein abundance in hindbrain regions, as well as enhanced stress susceptibility and blunted behavioral responses to pharmacological inhibition of N-methyl-D-aspartate receptors (NMDARs). RNA sequencing of cerebellar tissue revealed that DaoG130V resulted in decreased expression of two gene networks that are enriched for synaptic functions and for genes expressed, respectively, in Purkinje neurons or granule neurons. These gene networks were also down-regulated in the cerebellum of patients with bipolar disorder compared to healthy controls and were enriched for additional rare variants associated with bipolar disorder risk. These findings implicate dysregulation of NMDAR signaling and of gene expression in cerebellar neurons in bipolar disorder pathophysiology and provide insight into its genetic architecture

    Influence of the Cortical Midline Structures on Moral Emotion and Motivation in Moral Decision-Making

    Get PDF
    The present study aims to examine the relationship between the cortical midline structures (CMS), which have been regarded to be associated with selfhood, and moral decision making processes at the neural level. Traditional moral psychological studies have suggested the role of moral self as the moderator of moral cognition, so activity of moral self would present at the neural level. The present study examined the interaction between the CMS and other moral-related regions by conducting psycho-physiological interaction analysis of functional images acquired while 16 subjects were solving moral dilemmas. Furthermore, we performed Granger causality analysis to demonstrate the direction of influences between activities in the regions in moral decision-making. We first demonstrate there are significant positive interactions between two central CMS seed regions—i.e., the medial prefrontal cortex (MPFC) and posterior cingulate cortex (PCC)—and brain regions associated with moral functioning including the cerebellum, brainstem, midbrain, dorsolateral prefrontal cortex, orbitofrontal cortex and anterior insula (AI); on the other hand, the posterior insula (PI) showed significant negative interaction with the seed regions. Second, several significant Granger causality was found from CMS to insula regions particularly under the moral-personal condition. Furthermore, significant dominant influence from the AI to PI was reported. Moral psychological implications of these findings are discussed. The present study demonstrated the significant interaction and influence between the CMS and morality-related regions while subject were solving moral dilemmas. Given that, activity in the CMS is significantly involved in human moral functioning

    Repetitive Religious Chanting Invokes Positive Emotional Schema to Counterbalance Fear: A Multi-Modal Functional and Structural MRI Study

    Get PDF
    Introduction: During hard times, religious chanting/praying is widely practiced to cope with negative or stressful emotions. While the underlying neural mechanism has not been investigated to a sufficient extent. A previous event-related potential study showed that religious chanting could significantly diminish the late-positive potential induced by negative stimuli. However, the regulatory role of subcortical brain regions, especially the amygdala, in this process remains unclear. This multi-modal MRI study aimed to further clarify the neural mechanism underlying the effectiveness of religious chanting for emotion regulation. Methodology: Twenty-one participants were recruited for a multi-modal MRI study. Their age range was 40–52 years, 11 were female and all participants had at least 1 year of experience in religious chanting. The participants were asked to view neutral/fearful pictures while practicing religious chanting (i.e., chanting the name of Buddha Amitābha), non-religious chanting (i.e., chanting the name of Santa Claus), or no chanting. A 3.0 T Philips MRI scanner was used to collect the data and SPM12 was used to analyze the imaging data. Voxel-based morphometry (VBM) was used to explore the potential hemispheric asymmetries in practitioners. Results: Compared to non-religious chanting and no chanting, higher brain activity was observed in several brain regions when participants performed religious chanting while viewing fearful images. These brain regions included the fusiform gyrus, left parietal lobule, and prefrontal cortex, as well as subcortical regions such as the amygdala, thalamus, and midbrain. Importantly, significantly more activity was observed in the left than in the right amygdala during religious chanting. VBM showed hemispheric asymmetries, mainly in the thalamus, putamen, hippocampus, amygdala, and cerebellum; areas related to skill learning and biased memory formation. Conclusion: This preliminary study showed that repetitive religious chanting may induce strong brain activity, especially in response to stimuli with negative valence. Practicing religious chanting may structurally lateralize a network of brain areas involved in biased memory formation. These functional and structural results suggest that religious chanting helps to form a positive schema to counterbalance negative emotions. Future randomized control studies are necessary to confirm the neural mechanism related to religious chanting in coping with stress and negative emotions.publishedVersio

    Measuring the Reading-Attention Relationship: Functional Differences in Working Memory Activity During Single Word Decoding in Children With and Without Reading Disorder

    Get PDF
    Working memory (WM) is linked to the development of reading skills and has been evidenced to contribute to reading comprehension difficulties in children with reading disorder (RD). Several converging models suggest WM to contribute to the development of foundational reading skills, but few studies have assessed this contribution in either typically developing readers (TD) or children with RD. In effort to bridge this gap, the current study identified whether a functional neuroimaging task could be used to identify changes in WM activity during single word reading in children with and without RD. Two groups of children (77 RD, 22 TD) aged 7-9 completed a functional magnetic resonance imaging (fMRI) task which paired reading and n-back trials to identify activation of a priori chosen regions of interest in the WM network during single word decoding. Trials consisted of words, pseudowords, and false font stimuli to assess WM activity between groups in relation to familiar words, unfamiliar words, and non-words. Exploratory analysis of behavioural WM correlates were assessed using measures of performance on the fMRI task as well as measures of verbal learning from the California Verbal Learning Test – Children’s version. Results show the fMRI task was able to identify WM network activity in both groups. In the RD group WM activity was indiscriminate to stimulus type and did not show any patterns of lateralization. In the TD group, WM activity was strongly left lateralized, and only detected during pseudoword reading, suggesting increases in WM activity during phonetic decoding only. Findings suggest the WM network may contribute differently to single word reading in children with and without RD and highlights the potential functional imaging may have in defining this relationship over the course of reading development

    Materiality and human cognition

    Get PDF
    In this paper, we examine the role of materiality in human cognition. We address issues such as the ways in which brain functions may change in response to interactions with material forms, the attributes of material forms that may cause change in brain functions, and the spans of time required for brain functions to reorganize when interacting with material forms. We then contrast thinking through materiality with thinking about it. We discuss these in terms of their evolutionary significance and history as attested by stone tools and writing, material forms whose interaction endowed our lineage with conceptual thought and meta-awareness of conceptual domains

    CEREBELLUM-SEEDED FUNCTIONAL CONNECTIVITY CHANGES IN TRAIT-ANXIOUS INDIVIDUALS UNDERGOING ATTENTION BIAS MODIFICATION TRAINING

    Get PDF
    Anxiety and anxiety related disorders are increasing at a drastic rate in the past decade, with the NIMH reporting that 31.1% of U.S. adults will experience an anxiety disorder at some point in their lives. Anxiety is commonly characterized by increased attention bias to threat. Attention Bias Modification (ABM) is a new treatment used to reduce individual’s attention bias towards threat. The extent to which ABM leads to underlying neural changes is still unknown. The cerebellum is a neglected brain structure, with new research provides evidence that cerebellum’s functional connectivity and shared networks with threat processing regions has a direct impact on anxiety etiology and symptomology. Therefore, the current study assessed functional connectivity changes seeded in cerebellum as an outcome of ABM training. The experiment consists of a 6-week ABM or control training period bookended by pre and post resting state functional magnetic resonance imaging (rsfMRI) sessions. Heightened trait anxiety was correlated with heightened connectivity from the cerebellum to threat processing regions. (i.e., the amygdala, ACC, and the thalamus). Decreased cerebellar connectivity to threat processing regions (i.e., the amygdala, ACC, and the thalamus) was observed following ABM training. This suggests that ABM may underly neural changes within the cerebellum—resulting in decreased attention bias. This also suggests the cerebellum may contribute to the etiology and maintenance of anxiety and attention bias. Limitations and future directions concerned with both ABM and the functional role of the cerebellum are discussed

    What do faculties specializing in brain and neural sciences think about, and how do they approach, brain-friendly teaching-learning in Iran?

    Get PDF
    Objective: to investigate the perspectives and experiences of the faculties specializing in brain and neural sciences regarding brain-friendly teaching-learning in Iran. Methods: 17 faculties from 5 universities were selected by purposive sampling (2018). In-depth semi-structured interviews with directed content analysis were used. Results: 31 sub-subcategories, 10 subcategories, and 4 categories were formed according to the “General teaching model”. “Mentorship” was a newly added category. Conclusions: A neuro-educational approach that consider the roles of the learner’s brain uniqueness, executive function facilitation, and the valence system are important to learning. Such learning can be facilitated through cognitive load considerations, repetition, deep questioning, visualization, feedback, and reflection. The contextualized, problem-oriented, social, multi-sensory, experiential, spaced learning, and brain-friendly evaluation must be considered. Mentorship is important for coaching and emotional facilitation
    corecore