3,625 research outputs found

    TEMPOS: A Platform for Developing Temporal Applications on Top of Object DBMS

    Get PDF
    This paper presents TEMPOS: a set of models and languages supporting the manipulation of temporal data on top of object DBMS. The proposed models exploit object-oriented technology to meet some important, yet traditionally neglected design criteria related to legacy code migration and representation independence. Two complementary ways for accessing temporal data are offered: a query language and a visual browser. The query language, namely TempOQL, is an extension of OQL supporting the manipulation of histories regardless of their representations, through fully composable functional operators. The visual browser offers operators that facilitate several time-related interactive navigation tasks, such as studying a snapshot of a collection of objects at a given instant, or detecting and examining changes within temporal attributes and relationships. TEMPOS models and languages have been formalized both at the syntactical and the semantical level and have been implemented on top of an object DBMS. The suitability of the proposals with regard to applications' requirements has been validated through concrete case studies

    Ontology mapping: the state of the art

    No full text
    Ontology mapping is seen as a solution provider in today's landscape of ontology research. As the number of ontologies that are made publicly available and accessible on the Web increases steadily, so does the need for applications to use them. A single ontology is no longer enough to support the tasks envisaged by a distributed environment like the Semantic Web. Multiple ontologies need to be accessed from several applications. Mapping could provide a common layer from which several ontologies could be accessed and hence could exchange information in semantically sound manners. Developing such mapping has beeb the focus of a variety of works originating from diverse communities over a number of years. In this article we comprehensively review and present these works. We also provide insights on the pragmatics of ontology mapping and elaborate on a theoretical approach for defining ontology mapping

    Using Ontologies for Semantic Data Integration

    Get PDF
    While big data analytics is considered as one of the most important paths to competitive advantage of today’s enterprises, data scientists spend a comparatively large amount of time in the data preparation and data integration phase of a big data project. This shows that data integration is still a major challenge in IT applications. Over the past two decades, the idea of using semantics for data integration has become increasingly crucial, and has received much attention in the AI, database, web, and data mining communities. Here, we focus on a specific paradigm for semantic data integration, called Ontology-Based Data Access (OBDA). The goal of this paper is to provide an overview of OBDA, pointing out both the techniques that are at the basis of the paradigm, and the main challenges that remain to be addressed

    Distribution of the Object Oriented Databases. A Viewpoint of the MVDB Model's Methodology and Architecture

    Get PDF
    In databases, much work has been done towards extending models with advanced tools such as view technology, schema evolution support, multiple classification, role modeling and viewpoints. Over the past years, most of the research dealing with the object multiple representation and evolution has proposed to enrich the monolithic vision of the classical object approach in which an object belongs to one hierarchy class. In particular, the integration of the viewpoint mechanism to the conventional object-oriented data model gives it flexibility and allows one to improve the modeling power of objects. The viewpoint paradigm refers to the multiple descriptions, the distribution, and the evolution of object. Also, it can be an undeniable contribution for a distributed design of complex databases. The motivation of this paper is to define an object data model integrating viewpoints in databases and to present a federated database architecture integrating multiple viewpoint sources following a local-as-extended-view data integration approach.object-oriented data model, OQL language, LAEV data integration approach, MVDB model, federated databases, Local-As-View Strategy.

    Information Integration - the process of integration, evolution and versioning

    Get PDF
    At present, many information sources are available wherever you are. Most of the time, the information needed is spread across several of those information sources. Gathering this information is a tedious and time consuming job. Automating this process would assist the user in its task. Integration of the information sources provides a global information source with all information needed present. All of these information sources also change over time. With each change of the information source, the schema of this source can be changed as well. The data contained in the information source, however, cannot be changed every time, due to the huge amount of data that would have to be converted in order to conform to the most recent schema.\ud In this report we describe the current methods to information integration, evolution and versioning. We distinguish between integration of schemas and integration of the actual data. We also show some key issues when integrating XML data sources

    A database model for object dynamics.

    Get PDF
    Object-oriented database systems, Dynamic object re-classification, Object role model, Dynamic class hierarchy, Object migration

    Managing Schema Change in an Heterogeneous Environment

    Get PDF
    Change is inevitable even for persistent information. Effectively managing change of persistent information, which includes the specification, execution and the maintenance of any derived information, is critical and must be addressed by all database systems. Today, for every data model there exists a well-defined set of change primitives that can alter both the structure (the schema) and the data. Several proposals also exist for incrementally propagating a primitive change to any derived information (or view). However, existing support is lacking in two ways. First, change primitives as presented in literature are very limiting in terms of their capabilities allowing users to simply add or remove schema elements. More complex types of changes such the merging or splitting of schema elements are not supported in a principled manner. Second, algorithms for maintaining derived information often do not account for the potential heterogeneity between the source and the target. The goal of this dissertation is to provide solutions that address these two key issues. The first part of this dissertation addresses the challenge of expressing a rich complex set of changes. We propose the SERF (Schema Evolution through an Extensible, Re-usable and Flexible) framework that allows users to perform a wide range of complex user-defined schema transformations. Our approach combines existing schema evolution primitives using OQL (object query language) as the glue logic. Within the context of this work, we look at the different domains in which SERF can be applied, including web site management. To further enrich our framework, we also investigate the optimization and verification of SERF transformations. The second part of this dissertation addresses the problem of maintaining views in the face of source changes when the source and the view are not in the same data model. With today\u27s increasing heterogeneity in information structure, it is critical that maintenance of views addresses the data model boundaries. However, view definitions that go across data models are limited to hard-coded algorithms, thereby making it difficult to develop general maintenance algorithms. We provide a two-step solution for this problem. We have developed a cross algebra, that defines views such that there is no restriction that forces the view and the source data models to be the same. We then define update propagation algorithms that can propagate changes from source to target irrespective of the exact translation and the data models. We validate our ideas by applying them to translation and change propagation between the XML and relational data models

    Stateful Testing: Finding More Errors in Code and Contracts

    Full text link
    Automated random testing has shown to be an effective approach to finding faults but still faces a major unsolved issue: how to generate test inputs diverse enough to find many faults and find them quickly. Stateful testing, the automated testing technique introduced in this article, generates new test cases that improve an existing test suite. The generated test cases are designed to violate the dynamically inferred contracts (invariants) characterizing the existing test suite. As a consequence, they are in a good position to detect new errors, and also to improve the accuracy of the inferred contracts by discovering those that are unsound. Experiments on 13 data structure classes totalling over 28,000 lines of code demonstrate the effectiveness of stateful testing in improving over the results of long sessions of random testing: stateful testing found 68.4% new errors and improved the accuracy of automatically inferred contracts to over 99%, with just a 7% time overhead.Comment: 11 pages, 3 figure

    Evolving Objects in Temporal Information Systems

    Get PDF
    This paper presents a semantic foundation of temporal conceptual models used to design temporal information systems. We consider a modelling language able to express both timestamping and evolution constraints. We conduct a deeper investigation of evolution constraints, eventually devising a model-theoretic semantics for a full-fledged model with both timestamping and evolution constraints. The proposed formalization is meant both to clarify the meaning of the various temporal constructors that appeared in the literature and to give a rigorous definition, in the context of temporal information systems, to notions like satisfiability, subsumption and logical implication. Furthermore, we show how to express temporal constraints using a subset of first-order temporal logic, i.e. DLRUS, the description logic DLR extended with the temporal operators Since and Until. We show how DLRUS is able to capture the various modelling constraints in a succinct way and to perform automated reasoning on temporal conceptual models
    corecore