12,947 research outputs found

    Evolving NoSQL Databases Without Downtime

    Full text link
    NoSQL databases like Redis, Cassandra, and MongoDB are increasingly popular because they are flexible, lightweight, and easy to work with. Applications that use these databases will evolve over time, sometimes necessitating (or preferring) a change to the format or organization of the data. The problem we address in this paper is: How can we support the evolution of high-availability applications and their NoSQL data online, without excessive delays or interruptions, even in the presence of backward-incompatible data format changes? We present KVolve, an extension to the popular Redis NoSQL database, as a solution to this problem. KVolve permits a developer to submit an upgrade specification that defines how to transform existing data to the newest version. This transformation is applied lazily as applications interact with the database, thus avoiding long pause times. We demonstrate that KVolve is expressive enough to support substantial practical updates, including format changes to RedisFS, a Redis-backed file system, while imposing essentially no overhead in general use and minimal pause times during updates.Comment: Update to writing/structur

    Evolving information systems: meeting the ever-changing environment

    Get PDF
    To meet the demands of organizations and their ever-changing environment, information systems are required which are able to evolve to the same extent as organizations do. Such a system has to support changes in all time-and application-dependent aspects. In this paper, requirements and a conceptual framework for evolving information systems are presented. This framework includes an architecture for such systems and a revision of the traditional notion of update. Based on this evolutionary notion of update (recording, correction and forgetting) a state transition-oriented model on three levels of abstraction (event level, recording level, correction level) is introduced. Examples are provided to illustrate the conceptual framework for evolving information systems

    Integrity Constraint Checking in Federated Databases

    Get PDF
    A federated database is comprised of multiple interconnected databases that cooperate in an autonomous fashion. Global integrity constraints are very useful in federated databases, but the lack of global queries, global transaction mechanisms, and global concurrency control renders traditional constraint management techniques inapplicable. The paper presents a threefold contribution to integrity constraint checking in federated databases: (1) the problem of constraint checking in a federated database environment is clearly formulated; (2) a family of cooperative protocols for constraint checking is presented; (3) the differences across protocols in the family are analyzed with respect to system requirements, properties guaranteed, and costs involved. Thus, we provide a suite of options with protocols for various environments with specific system capabilities and integrity requirement

    Compensation methods to support cooperative applications: A case study in automated verification of schema requirements for an advanced transaction model

    Get PDF
    Compensation plays an important role in advanced transaction models, cooperative work and workflow systems. A schema designer is typically required to supply for each transaction another transaction to semantically undo the effects of . Little attention has been paid to the verification of the desirable properties of such operations, however. This paper demonstrates the use of a higher-order logic theorem prover for verifying that compensating transactions return a database to its original state. It is shown how an OODB schema is translated to the language of the theorem prover so that proofs can be performed on the compensating transactions

    Middleware-based Database Replication: The Gaps between Theory and Practice

    Get PDF
    The need for high availability and performance in data management systems has been fueling a long running interest in database replication from both academia and industry. However, academic groups often attack replication problems in isolation, overlooking the need for completeness in their solutions, while commercial teams take a holistic approach that often misses opportunities for fundamental innovation. This has created over time a gap between academic research and industrial practice. This paper aims to characterize the gap along three axes: performance, availability, and administration. We build on our own experience developing and deploying replication systems in commercial and academic settings, as well as on a large body of prior related work. We sift through representative examples from the last decade of open-source, academic, and commercial database replication systems and combine this material with case studies from real systems deployed at Fortune 500 customers. We propose two agendas, one for academic research and one for industrial R&D, which we believe can bridge the gap within 5-10 years. This way, we hope to both motivate and help researchers in making the theory and practice of middleware-based database replication more relevant to each other.Comment: 14 pages. Appears in Proc. ACM SIGMOD International Conference on Management of Data, Vancouver, Canada, June 200
    • ā€¦
    corecore