6,767 research outputs found

    Bridging the Semantic Gap with SQL Query Logs in Natural Language Interfaces to Databases

    Full text link
    A critical challenge in constructing a natural language interface to database (NLIDB) is bridging the semantic gap between a natural language query (NLQ) and the underlying data. Two specific ways this challenge exhibits itself is through keyword mapping and join path inference. Keyword mapping is the task of mapping individual keywords in the original NLQ to database elements (such as relations, attributes or values). It is challenging due to the ambiguity in mapping the user's mental model and diction to the schema definition and contents of the underlying database. Join path inference is the process of selecting the relations and join conditions in the FROM clause of the final SQL query, and is difficult because NLIDB users lack the knowledge of the database schema or SQL and therefore cannot explicitly specify the intermediate tables and joins needed to construct a final SQL query. In this paper, we propose leveraging information from the SQL query log of a database to enhance the performance of existing NLIDBs with respect to these challenges. We present a system Templar that can be used to augment existing NLIDBs. Our extensive experimental evaluation demonstrates the effectiveness of our approach, leading up to 138% improvement in top-1 accuracy in existing NLIDBs by leveraging SQL query log information.Comment: Accepted to IEEE International Conference on Data Engineering (ICDE) 201

    Self-adaptive Based Model for Ambiguity Resolution of The Linked Data Query for Big Data Analytics

    Get PDF
    Integration of heterogeneous data sources is a crucial step in big data analytics, although it creates ambiguity issues during mapping between the sources due to the variation in the query terms, data structure and granularity conflicts. However, there are limited researches on effective big data integration to address the ambiguity issue for big data analytics. This paper introduces a self-adaptive model for big data integration by exploiting the data structure during querying in order to mitigate and resolve ambiguities. An assessment of a preliminary work on the Geography and Quran dataset is reported to illustrate the feasibility of the proposed model that motivates future work such as solving complex query

    Web Data Extraction, Applications and Techniques: A Survey

    Full text link
    Web Data Extraction is an important problem that has been studied by means of different scientific tools and in a broad range of applications. Many approaches to extracting data from the Web have been designed to solve specific problems and operate in ad-hoc domains. Other approaches, instead, heavily reuse techniques and algorithms developed in the field of Information Extraction. This survey aims at providing a structured and comprehensive overview of the literature in the field of Web Data Extraction. We provided a simple classification framework in which existing Web Data Extraction applications are grouped into two main classes, namely applications at the Enterprise level and at the Social Web level. At the Enterprise level, Web Data Extraction techniques emerge as a key tool to perform data analysis in Business and Competitive Intelligence systems as well as for business process re-engineering. At the Social Web level, Web Data Extraction techniques allow to gather a large amount of structured data continuously generated and disseminated by Web 2.0, Social Media and Online Social Network users and this offers unprecedented opportunities to analyze human behavior at a very large scale. We discuss also the potential of cross-fertilization, i.e., on the possibility of re-using Web Data Extraction techniques originally designed to work in a given domain, in other domains.Comment: Knowledge-based System

    Abmash: Mashing Up Legacy Web Applications by Automated Imitation of Human Actions

    Get PDF
    Many business web-based applications do not offer applications programming interfaces (APIs) to enable other applications to access their data and functions in a programmatic manner. This makes their composition difficult (for instance to synchronize data between two applications). To address this challenge, this paper presents Abmash, an approach to facilitate the integration of such legacy web applications by automatically imitating human interactions with them. By automatically interacting with the graphical user interface (GUI) of web applications, the system supports all forms of integrations including bi-directional interactions and is able to interact with AJAX-based applications. Furthermore, the integration programs are easy to write since they deal with end-user, visual user-interface elements. The integration code is simple enough to be called a "mashup".Comment: Software: Practice and Experience (2013)
    corecore