854 research outputs found

    On soft/hard handoff for packet data services in cellular CDMA mobiles systems

    Get PDF
    Benefits of macrodiversity operation for packet data services in third generation mobile systems are not obvious. Retransmission procedures to enhance link performance and higher downlink bandwidth requirements could question macrodiversity usage. This paper describes a simple methodology to compare soft and hard handoff performance in terms of transmission delay for packet data services. The handover procedures are based exclusively on power criteria and hysteresis margins.Peer ReviewedPostprint (published version

    Resource management in QoS-aware wireless cellular networks

    Get PDF
    2011 Summer.Includes bibliographical references.Emerging broadband wireless networks that support high speed packet data with heterogeneous quality of service (QoS) requirements demand more flexible and efficient use of the scarce spectral resource. Opportunistic scheduling exploits the time-varying, location-dependent channel conditions to achieve multiuser diversity. In this work, we study two types of resource allocation problems in QoS-aware wireless cellular networks. First, we develop a rigorous framework to study opportunistic scheduling in multiuser OFDM systems. We derive optimal opportunistic scheduling policies under three common QoS/fairness constraints for multiuser OFDM systems--temporal fairness, utilitarian fairness, and minimum-performance guarantees. To implement these optimal policies efficiently, we provide a modified Hungarian algorithm and a simple suboptimal algorithm. We then propose a generalized opportunistic scheduling framework that incorporates multiple mixed QoS/fairness constraints, including providing both lower and upper bound constraints. Next, taking input queues and channel memory into consideration, we reformulate the transmission scheduling problem as a new class of Markov decision processes (MDPs) with fairness constraints. We investigate the throughput maximization and the delay minimization problems in this context. We study two categories of fairness constraints, namely temporal fairness and utilitarian fairness. We consider two criteria: infinite horizon expected total discounted reward and expected average reward. We derive and prove explicit dynamic programming equations for the above constrained MDPs, and characterize optimal scheduling policies based on those equations. An attractive feature of our proposed schemes is that they can easily be extended to fit different objective functions and other fairness measures. Although we only focus on uplink scheduling, the scheme is equally applicable to the downlink case. Furthermore, we develop an efficient approximation method--temporal fair rollout--to reduce the computational cost

    Final report on the evaluation of RRM/CRRM algorithms

    Get PDF
    Deliverable public del projecte EVERESTThis deliverable provides a definition and a complete evaluation of the RRM/CRRM algorithms selected in D11 and D15, and evolved and refined on an iterative process. The evaluation will be carried out by means of simulations using the simulators provided at D07, and D14.Preprin

    Multilevel Downlink Relay Queue Aware And Loss Recovery Scheduling For Media Transmission In Wireless Cellular Networks

    Get PDF
    In this document, we study the result of multi hop relaying on the throughput of the downstream channel in cellular networks. In particular, we contrast the throughput of the multi hop method through that of the conventional cellular system, representing the feasible throughput development by the multi hop relaying under transitive transmission considerations. We moreover propose a hybrid control plan for the multi hop communicate, in which we activist the use of in cooperation, the straight transmission and the transitive multi hop relaying. Our study illustrates that the majority of the throughput gain can be obtained with the related of a transitive relaying scheme. Important throughput improvement could be moreover obtained by operating the simultaneous relaying transmission in conjunction with the non simultaneous transmission. We also disagree here that the multi hop relaying technology can be developed for mitigating injustice in qualityof- service (QoS), which arrive due to the location-dependent signal quality. Our outcomes demonstrate that the multi hop system can provide more even QoS over the cell district. The multi hop cellular system design can also be used as a selfconfiguring network mechanism that efficiently contains variability of traffic distribution. We have studied the throughput development for the consistent, as well as for the non uniform traffic distribution, and we conclude that the utilization of transitive relaying in cellular networks would be relatively robust to alter in the actual traffic distribution

    A Survey of Downlink Non-orthogonal Multiple Access for 5G Wireless Communication Networks

    Get PDF
    Accepted by ZTE CommunicationsAccepted by ZTE CommunicationsAccepted by ZTE CommunicationsAccepted by ZTE CommunicationsAccepted by ZTE CommunicationsNon-orthogonal multiple access (NOMA) has been recognized as a promising multiple access technique for the next generation cellular communication networks. In this paper, we first discuss a simple NOMA model with two users served by a single-carrier simultaneously to illustrate its basic principles. Then, a more general model with multicarrier serving an arbitrary number of users on each subcarrier is also discussed. An overview of existing works on performance analysis, resource allocation, and multiple-input multiple-output NOMA are summarized and discussed. Furthermore, we discuss the key features of NOMA and its potential research challenges

    Packet scheduling in wireless systems using MIMO arrays and VBLAST architecture

    Get PDF
    corecore