41,946 research outputs found

    Human-Machine Collaborative Optimization via Apprenticeship Scheduling

    Full text link
    Coordinating agents to complete a set of tasks with intercoupled temporal and resource constraints is computationally challenging, yet human domain experts can solve these difficult scheduling problems using paradigms learned through years of apprenticeship. A process for manually codifying this domain knowledge within a computational framework is necessary to scale beyond the ``single-expert, single-trainee" apprenticeship model. However, human domain experts often have difficulty describing their decision-making processes, causing the codification of this knowledge to become laborious. We propose a new approach for capturing domain-expert heuristics through a pairwise ranking formulation. Our approach is model-free and does not require enumerating or iterating through a large state space. We empirically demonstrate that this approach accurately learns multifaceted heuristics on a synthetic data set incorporating job-shop scheduling and vehicle routing problems, as well as on two real-world data sets consisting of demonstrations of experts solving a weapon-to-target assignment problem and a hospital resource allocation problem. We also demonstrate that policies learned from human scheduling demonstration via apprenticeship learning can substantially improve the efficiency of a branch-and-bound search for an optimal schedule. We employ this human-machine collaborative optimization technique on a variant of the weapon-to-target assignment problem. We demonstrate that this technique generates solutions substantially superior to those produced by human domain experts at a rate up to 9.5 times faster than an optimization approach and can be applied to optimally solve problems twice as complex as those solved by a human demonstrator.Comment: Portions of this paper were published in the Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI) in 2016 and in the Proceedings of Robotics: Science and Systems (RSS) in 2016. The paper consists of 50 pages with 11 figures and 4 table

    Learning Scheduling Algorithms for Data Processing Clusters

    Full text link
    Efficiently scheduling data processing jobs on distributed compute clusters requires complex algorithms. Current systems, however, use simple generalized heuristics and ignore workload characteristics, since developing and tuning a scheduling policy for each workload is infeasible. In this paper, we show that modern machine learning techniques can generate highly-efficient policies automatically. Decima uses reinforcement learning (RL) and neural networks to learn workload-specific scheduling algorithms without any human instruction beyond a high-level objective such as minimizing average job completion time. Off-the-shelf RL techniques, however, cannot handle the complexity and scale of the scheduling problem. To build Decima, we had to develop new representations for jobs' dependency graphs, design scalable RL models, and invent RL training methods for dealing with continuous stochastic job arrivals. Our prototype integration with Spark on a 25-node cluster shows that Decima improves the average job completion time over hand-tuned scheduling heuristics by at least 21%, achieving up to 2x improvement during periods of high cluster load

    Deep Reinforcement Learning for Wireless Sensor Scheduling in Cyber-Physical Systems

    Full text link
    In many Cyber-Physical Systems, we encounter the problem of remote state estimation of geographically distributed and remote physical processes. This paper studies the scheduling of sensor transmissions to estimate the states of multiple remote, dynamic processes. Information from the different sensors have to be transmitted to a central gateway over a wireless network for monitoring purposes, where typically fewer wireless channels are available than there are processes to be monitored. For effective estimation at the gateway, the sensors need to be scheduled appropriately, i.e., at each time instant one needs to decide which sensors have network access and which ones do not. To address this scheduling problem, we formulate an associated Markov decision process (MDP). This MDP is then solved using a Deep Q-Network, a recent deep reinforcement learning algorithm that is at once scalable and model-free. We compare our scheduling algorithm to popular scheduling algorithms such as round-robin and reduced-waiting-time, among others. Our algorithm is shown to significantly outperform these algorithms for many example scenarios

    The Emergence of Norms via Contextual Agreements in Open Societies

    Full text link
    This paper explores the emergence of norms in agents' societies when agents play multiple -even incompatible- roles in their social contexts simultaneously, and have limited interaction ranges. Specifically, this article proposes two reinforcement learning methods for agents to compute agreements on strategies for using common resources to perform joint tasks. The computation of norms by considering agents' playing multiple roles in their social contexts has not been studied before. To make the problem even more realistic for open societies, we do not assume that agents share knowledge on their common resources. So, they have to compute semantic agreements towards performing their joint actions. %The paper reports on an empirical study of whether and how efficiently societies of agents converge to norms, exploring the proposed social learning processes w.r.t. different society sizes, and the ways agents are connected. The results reported are very encouraging, regarding the speed of the learning process as well as the convergence rate, even in quite complex settings

    Buffer Pool Aware Query Scheduling via Deep Reinforcement Learning

    Full text link
    In this extended abstract, we propose a new technique for query scheduling with the explicit goal of reducing disk reads and thus implicitly increasing query performance. We introduce \system, a learned scheduler that leverages overlapping data reads among incoming queries and learns a scheduling strategy that improves cache hits. \system relies on deep reinforcement learning to produce workload-specific scheduling strategies that focus on long-term performance benefits while being adaptive to previously-unseen data access patterns. We present results from a proof-of-concept prototype, demonstrating that learned schedulers can offer significant performance improvements over hand-crafted scheduling heuristics. Ultimately, we make the case that this is a promising research direction in the intersection of machine learning and databases
    • …
    corecore