8,254 research outputs found

    Scheduling unit-length jobs with machine eligibility restrictions

    Get PDF
    Department of Logistics2006-2007 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Local search performance guarantees for restricted related parallel machine scheduling

    Get PDF
    We consider the problem of minimizing the makespan on restricted related parallel machines. In restricted machine scheduling each job is only allowed to be scheduled on a subset of machines. We study the worst-case behavior of local search algorithms. In particular, we analyze the quality of local optima with respect to the jump, swap, push and lexicographical jump neighborhood.operations research and management science;

    Scheduling with processing set restrictions : a survey

    Get PDF
    2008-2009 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Faster Algorithms for Semi-Matching Problems

    Full text link
    We consider the problem of finding \textit{semi-matching} in bipartite graphs which is also extensively studied under various names in the scheduling literature. We give faster algorithms for both weighted and unweighted case. For the weighted case, we give an O(nmlogn)O(nm\log n)-time algorithm, where nn is the number of vertices and mm is the number of edges, by exploiting the geometric structure of the problem. This improves the classical O(n3)O(n^3) algorithms by Horn [Operations Research 1973] and Bruno, Coffman and Sethi [Communications of the ACM 1974]. For the unweighted case, the bound could be improved even further. We give a simple divide-and-conquer algorithm which runs in O(nmlogn)O(\sqrt{n}m\log n) time, improving two previous O(nm)O(nm)-time algorithms by Abraham [MSc thesis, University of Glasgow 2003] and Harvey, Ladner, Lov\'asz and Tamir [WADS 2003 and Journal of Algorithms 2006]. We also extend this algorithm to solve the \textit{Balance Edge Cover} problem in O(nmlogn)O(\sqrt{n}m\log n) time, improving the previous O(nm)O(nm)-time algorithm by Harada, Ono, Sadakane and Yamashita [ISAAC 2008].Comment: ICALP 201

    Approximation Algorithms for Problems in Makespan Minimization on Unrelated Parallel Machines

    Get PDF
    A fundamental problem in scheduling is makespan minimization on unrelated parallel machines (R||Cmax). Let there be a set J of jobs and a set M of parallel machines, where every job Jj ∈ J has processing time or length pi,j ∈ ℚ+ on machine Mi ∈ M. The goal in R||Cmax is to schedule the jobs non-preemptively on the machines so as to minimize the length of the schedule, the makespan. A ρ-approximation algorithm produces in polynomial time a feasible solution such that its objective value is within a multiplicative factor ρ of the optimum, where ρ is called its approximation ratio. The best-known approximation algorithms for R||Cmax have approximation ratio 2, but there is no ρ-approximation algorithm with ρ \u3c 3/2 for R||Cmax unless P=NP. A longstanding open problem in approximation algorithms is to reconcile this hardness gap. We take a two-pronged approach to learn more about the hardness gap of R||Cmax: (1) find approximation algorithms for special cases of R||Cmax whose approximation ratios are tight (unless P=NP); (2) identify special cases of R||Cmax that have the same 3/2-hardness bound of R||Cmax, but where the approximation barrier of 2 can be broken. This thesis is divided into four parts. The first two parts investigate a special case of R||Cmax called the graph balancing problem when every job has one of two lengths and the machines may have one of two speeds. First, we present 3/2-approximation algorithms for the graph balancing problem with one speed and two job lengths. In the second part of this thesis we give an approximation algorithm for the graph balancing problem with two speeds and two job lengths with approximation ratio (√65+7)/8 ≈ 1.88278. In the third part of the thesis we present approximation algorithms and hardness of approximation results for two problems called R||Cmax with simple job-intersection structure and R||Cmax with bounded job assignments. We conclude this thesis by presenting algorithmic and computational complexity results for a generalization of R||Cmax where J is partitioned into sets called bags, and it must be that no two jobs belonging to the same bag are scheduled on the same machine
    corecore