3,362 research outputs found

    Scheduling with processing set restrictions : a survey

    Get PDF
    2008-2009 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Reallocation Problems in Scheduling

    Full text link
    In traditional on-line problems, such as scheduling, requests arrive over time, demanding available resources. As each request arrives, some resources may have to be irrevocably committed to servicing that request. In many situations, however, it may be possible or even necessary to reallocate previously allocated resources in order to satisfy a new request. This reallocation has a cost. This paper shows how to service the requests while minimizing the reallocation cost. We focus on the classic problem of scheduling jobs on a multiprocessor system. Each unit-size job has a time window in which it can be executed. Jobs are dynamically added and removed from the system. We provide an algorithm that maintains a valid schedule, as long as a sufficiently feasible schedule exists. The algorithm reschedules only a total number of O(min{log^* n, log^* Delta}) jobs for each job that is inserted or deleted from the system, where n is the number of active jobs and Delta is the size of the largest window.Comment: 9 oages, 1 table; extended abstract version to appear in SPAA 201

    Some combinational optimization problems on radio network communication and machine scheduling

    Get PDF
    The combinatorial optimization problems coming from two areas are studied in this dissertation: network communication and machine scheduling. In the network communication area, the complexity of distributed broadcasting and distributed gossiping is studied in the setting of random networks. Two different models are considered: one is random geometric networks, the main model used to study properties of sensor and ad-hoc networks, where ri points are randomly placed in a unit square and two points are connected by an edge if they are at most a certain fixed distance r from each other. The other model is the so-called line-of-sight networks, a new network model introduced recently by Frieze et al. (SODA\u2707). The nodes in this model are randomly placed (with probability p) on an n x n grid and a node can communicate with all the nodes that are in at most a certain fixed distance r and which are in the same row or column. It can be shown that in many scenarios of both models, the random structure of these networks makes it possible to perform distributed gossiping in asymptotically optimal time 0(D), where D is the diameter of the network. The simulation results show that most algorithms especially the randomized algorithm works very fast in practice. In the scheduling area, the first problem is online scheduling a set of equal processing time tasks with precedence constraints so as to minimize the makespan. It can be shown that Hu \u27s algorithm yields an asymptotic competitive ratio of 3/2 for intree precedence constraints and an asymptotic competitive ratio of 1 for outtree precedences, and Coffinan-Graham algorithm yields an asymptotic competitive ratio of 1 for arbitrary precedence constraints and two machines.The second scheduling problem is the integrated production and delivery scheduling with disjoint windows. In this problem, each job is associated with a time window, and a profit. A job must be finished within its time window to get the profit. The objective is to pick a set ofjobs and schedule them to get the maximum total profit. For a single machine and unit profit, an optimal algorithm is proposed. For a single machine and arbitrary profit, a fully polynomial time approximation scheme(FPTAS) is proposed. These algorithms can be extended to multiple machines with approximation ratio less than e/(e - 1). The third scheduling problem studied in this dissertation is the preemptive scheduling algorithms with nested and inclusive processing set restrictions. The objective is to minimize the makespan of the schedule. It can be shown that there is no optimal online algorithm even for the case of inclusive processing set. Then a linear time optimal algorithm is given for the case of nested processing set, where all jobs are available for processing at time t = 0. A more complicated algorithm with running time 0(n log ri) is given that produces not only optimal but also maximal schedules. When jobs have different release times, an optimal algorithm is given for the nested case and a faster optimal algorithm is given for the inclusive processing set case

    Restricted assignment scheduling with resource constraints

    Get PDF
    We consider parallel machine scheduling with job assignment restrictions, i.e., each job can only be processed on a certain subset of the machines. Moreover, each job requires a set of renewable resources. Any resource can be used by only one job at any time. The objective is to minimize the makespan. We present approximation algorithms with constant worst-case bound in the case that each job requires only a fixed number of resources. For some special cases optimal algorithms with polynomial running time are given. If any job requires at most one resource and the number of machines is fixed, we give a PTAS. On the other hand we prove that the problem is APX-hard, even when there are just three machines and the input is restricted to unit-time jobs. (C) 2018 Published by Elsevier B.V

    Approximation Algorithms for Problems in Makespan Minimization on Unrelated Parallel Machines

    Get PDF
    A fundamental problem in scheduling is makespan minimization on unrelated parallel machines (R||Cmax). Let there be a set J of jobs and a set M of parallel machines, where every job Jj ∈ J has processing time or length pi,j ∈ ℚ+ on machine Mi ∈ M. The goal in R||Cmax is to schedule the jobs non-preemptively on the machines so as to minimize the length of the schedule, the makespan. A ρ-approximation algorithm produces in polynomial time a feasible solution such that its objective value is within a multiplicative factor ρ of the optimum, where ρ is called its approximation ratio. The best-known approximation algorithms for R||Cmax have approximation ratio 2, but there is no ρ-approximation algorithm with ρ \u3c 3/2 for R||Cmax unless P=NP. A longstanding open problem in approximation algorithms is to reconcile this hardness gap. We take a two-pronged approach to learn more about the hardness gap of R||Cmax: (1) find approximation algorithms for special cases of R||Cmax whose approximation ratios are tight (unless P=NP); (2) identify special cases of R||Cmax that have the same 3/2-hardness bound of R||Cmax, but where the approximation barrier of 2 can be broken. This thesis is divided into four parts. The first two parts investigate a special case of R||Cmax called the graph balancing problem when every job has one of two lengths and the machines may have one of two speeds. First, we present 3/2-approximation algorithms for the graph balancing problem with one speed and two job lengths. In the second part of this thesis we give an approximation algorithm for the graph balancing problem with two speeds and two job lengths with approximation ratio (√65+7)/8 ≈ 1.88278. In the third part of the thesis we present approximation algorithms and hardness of approximation results for two problems called R||Cmax with simple job-intersection structure and R||Cmax with bounded job assignments. We conclude this thesis by presenting algorithmic and computational complexity results for a generalization of R||Cmax where J is partitioned into sets called bags, and it must be that no two jobs belonging to the same bag are scheduled on the same machine

    Parallel processing for scientific computations

    Get PDF
    The main contribution of the effort in the last two years is the introduction of the MOPPS system. After doing extensive literature search, we introduced the system which is described next. MOPPS employs a new solution to the problem of managing programs which solve scientific and engineering applications on a distributed processing environment. Autonomous computers cooperate efficiently in solving large scientific problems with this solution. MOPPS has the advantage of not assuming the presence of any particular network topology or configuration, computer architecture, or operating system. It imposes little overhead on network and processor resources while efficiently managing programs concurrently. The core of MOPPS is an intelligent program manager that builds a knowledge base of the execution performance of the parallel programs it is managing under various conditions. The manager applies this knowledge to improve the performance of future runs. The program manager learns from experience

    Faster Algorithms for Semi-Matching Problems

    Full text link
    We consider the problem of finding \textit{semi-matching} in bipartite graphs which is also extensively studied under various names in the scheduling literature. We give faster algorithms for both weighted and unweighted case. For the weighted case, we give an O(nmlogn)O(nm\log n)-time algorithm, where nn is the number of vertices and mm is the number of edges, by exploiting the geometric structure of the problem. This improves the classical O(n3)O(n^3) algorithms by Horn [Operations Research 1973] and Bruno, Coffman and Sethi [Communications of the ACM 1974]. For the unweighted case, the bound could be improved even further. We give a simple divide-and-conquer algorithm which runs in O(nmlogn)O(\sqrt{n}m\log n) time, improving two previous O(nm)O(nm)-time algorithms by Abraham [MSc thesis, University of Glasgow 2003] and Harvey, Ladner, Lov\'asz and Tamir [WADS 2003 and Journal of Algorithms 2006]. We also extend this algorithm to solve the \textit{Balance Edge Cover} problem in O(nmlogn)O(\sqrt{n}m\log n) time, improving the previous O(nm)O(nm)-time algorithm by Harada, Ono, Sadakane and Yamashita [ISAAC 2008].Comment: ICALP 201

    Scheduling parallel machines with inclusive processing set restrictions and job release times

    Get PDF
    2009-2010 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Approximation Schemes for Machine Scheduling

    Get PDF
    In the classical problem of makespan minimization on identical parallel machines, or machine scheduling for short, a set of jobs has to be assigned to a set of machines. The jobs have a processing time and the goal is to minimize the latest finishing time of the jobs. Machine scheduling is well known to be NP-hard and thus there is no polynomial time algorithm for this problem that is guaranteed to find an optimal solution unless P=NP. There is, however, a polynomial time approximation scheme (PTAS) for machine scheduling, that is, a family of approximation algorithms with ratios arbitrarily close to one. Whether a problem admits an approximation scheme or not is a fundamental question in approximation theory. In the present work, we consider this question for several variants of machine scheduling. We study the problem where the machines are partitioned into a constant number of types and the processing time of the jobs is also dependent on the machine type. We present so called efficient PTAS (EPTAS) results for this problem and variants thereof. We show that certain cases of machine scheduling with assignment restrictions do not admit a PTAS unless P=NP. Moreover, we introduce a graph framework based on the restrictions of the jobs and use it in the design of approximation schemes for other variants. We introduce an enhanced integer programming formulation for assignment problems, show that it can be efficiently solved, and use it in the EPTAS design for variants of machine scheduling with setup times. For one of the problems, we show that there is also a PTAS in the case with uniform machines, where machines have speeds influencing the processing times of the jobs. We consider cases in which each job requires a certain amount of a shared renewable resource and the processing time is depended on the amount of resource it receives or not. We present so called asymptotic fully polynomial time approximation schemes (AFPTAS) for the problems
    corecore