1,996 research outputs found

    The VCG Mechanism for Bayesian Scheduling

    Get PDF
    We study the problem of scheduling m tasks to n selfish, unrelated machines in order to minimize the makespan, in which the execution times are independent random variables, identical across machines. We show that the VCG mechanism, which myopically allocates each task to its best machine, achieves an approximation ratio of O(ln n&frac; ln ln n). This improves significantly on the previously best known bound of O(m/n) for prior-independent mechanisms, given by Chawla et al. [7] under the additional assumption of Monotone Hazard Rate (MHR) distributions. Although we demonstrate that this is tight in general, if we do maintain the MHR assumption, then we get improved, (small) constant bounds for m ≥ n ln n i.i.d. tasks. We also identify a sufficient condition on the distribution that yields a constant approximation ratio regardless of the number of tasks

    Optimal maintenance of multi-component systems: a review

    Get PDF
    In this article we give an overview of the literature on multi-component maintenance optimization. We focus on work appearing since the 1991 survey "A survey of maintenance models for multi-unit systems" by Cho and Parlar. This paper builds forth on the review article by Dekker et al. (1996), which focusses on economic dependence, and the survey of maintenance policies by Wang (2002), in which some group maintenance and some opportunistic maintenance policies are considered. Our classification scheme is primarily based on the dependence between components (stochastic, structural or economic). Next, we also classify the papers on the basis of the planning aspect (short-term vs long-term), the grouping of maintenance activities (either grouping preventive or corrective maintenance, or opportunistic grouping) and the optimization approach used (heuristic, policy classes or exact algorithms). Finally, we pay attention to the applications of the models.literature review;economic dependence;failure interaction;maintenance policies;grouping maintenance;multi-component systems;opportunistic maintenance;maintencance optimization;structural dependence

    Towards Optimality in Parallel Scheduling

    Full text link
    To keep pace with Moore's law, chip designers have focused on increasing the number of cores per chip rather than single core performance. In turn, modern jobs are often designed to run on any number of cores. However, to effectively leverage these multi-core chips, one must address the question of how many cores to assign to each job. Given that jobs receive sublinear speedups from additional cores, there is an obvious tradeoff: allocating more cores to an individual job reduces the job's runtime, but in turn decreases the efficiency of the overall system. We ask how the system should schedule jobs across cores so as to minimize the mean response time over a stream of incoming jobs. To answer this question, we develop an analytical model of jobs running on a multi-core machine. We prove that EQUI, a policy which continuously divides cores evenly across jobs, is optimal when all jobs follow a single speedup curve and have exponentially distributed sizes. EQUI requires jobs to change their level of parallelization while they run. Since this is not possible for all workloads, we consider a class of "fixed-width" policies, which choose a single level of parallelization, k, to use for all jobs. We prove that, surprisingly, it is possible to achieve EQUI's performance without requiring jobs to change their levels of parallelization by using the optimal fixed level of parallelization, k*. We also show how to analytically derive the optimal k* as a function of the system load, the speedup curve, and the job size distribution. In the case where jobs may follow different speedup curves, finding a good scheduling policy is even more challenging. We find that policies like EQUI which performed well in the case of a single speedup function now perform poorly. We propose a very simple policy, GREEDY*, which performs near-optimally when compared to the numerically-derived optimal policy

    A Tight 2-Approximation for Preemptive Stochastic Scheduling

    Full text link

    Deterministic and stochastic scheduling: : Extended abstracts

    Get PDF

    The VCG mechanism for Bayesian scheduling

    Get PDF
    We study the problem of scheduling m tasks to n selfish, unrelated machines in order to minimize the makespan, where the execution times are independent random variables, identical across machines. We show that the VCG mechanism, which myopically allocates each task to its best machine, achieves an approximation ratio of (Formula presented). This improves significantly on the previously best known bound of (Formula presented) for prior-independent mechanisms, given by Chawla et al. [STOC’13] under the additional assumption of Monotone Hazard Rate (MHR) distributions. Although we demonstrate that this is in general tight, if we do maintain the MHR assumption, then we get improved, (small) constant bounds for m ≥ n ln n i.i.d. tasks, while we also identify a sufficient condition on the distribution that yields a constant approximation ratio regardless of the number of tasks

    FMS loading with reliability consideration.

    Get PDF
    • …
    corecore