111 research outputs found

    Scheduling Jobs in Flowshops with the Introduction of Additional Machines in the Future

    Get PDF
    This is the author's peer-reviewed final manuscript, as accepted by the publisher. The published article is copyrighted by Elsevier and can be found at: http://www.journals.elsevier.com/expert-systems-with-applications/.The problem of scheduling jobs to minimize total weighted tardiness in flowshops,\ud with the possibility of evolving into hybrid flowshops in the future, is investigated in\ud this paper. As this research is guided by a real problem in industry, the flowshop\ud considered has considerable flexibility, which stimulated the development of an\ud innovative methodology for this research. Each stage of the flowshop currently has\ud one or several identical machines. However, the manufacturing company is planning\ud to introduce additional machines with different capabilities in different stages in the\ud near future. Thus, the algorithm proposed and developed for the problem is not only\ud capable of solving the current flow line configuration but also the potential new\ud configurations that may result in the future. A meta-heuristic search algorithm based\ud on Tabu search is developed to solve this NP-hard, industry-guided problem. Six\ud different initial solution finding mechanisms are proposed. A carefully planned\ud nested split-plot design is performed to test the significance of different factors and\ud their impact on the performance of the different algorithms. To the best of our\ud knowledge, this research is the first of its kind that attempts to solve an industry-guided\ud problem with the concern for future developments

    A Novel Approach to the Common Due-Date Problem on Single and Parallel Machines

    Full text link
    This paper presents a novel idea for the general case of the Common Due-Date (CDD) scheduling problem. The problem is about scheduling a certain number of jobs on a single or parallel machines where all the jobs possess different processing times but a common due-date. The objective of the problem is to minimize the total penalty incurred due to earliness or tardiness of the job completions. This work presents exact polynomial algorithms for optimizing a given job sequence for single and identical parallel machines with the run-time complexities of O(nlogn)O(n \log n) for both cases, where nn is the number of jobs. Besides, we show that our approach for the parallel machine case is also suitable for non-identical parallel machines. We prove the optimality for the single machine case and the runtime complexities of both. Henceforth, we extend our approach to one particular dynamic case of the CDD and conclude the chapter with our results for the benchmark instances provided in the OR-library.Comment: Book Chapter 22 page

    Weighted tardiness minimization for unrelated machines with sequence-dependent and resource-constrained setups

    Full text link
    Motivated by the need of quick job (re-)scheduling, we examine an elaborate scheduling environment under the objective of total weighted tardiness minimization. The examined problem variant moves well beyond existing literature, as it considers unrelated machines, sequence-dependent and machine-dependent setup times and a renewable resource constraint on the number of simultaneous setups. For this variant, we provide a relaxed MILP to calculate lower bounds, thus estimating a worst-case optimality gap. As a fast exact approach appears not plausible for instances of practical importance, we extend known (meta-)heuristics to deal with the problem at hand, coupling them with a Constraint Programming (CP) component - vital to guarantee the non-violation of the problem's constraints - which optimally allocates resources with respect to tardiness minimization. The validity and versatility of employing different (meta-)heuristics exploiting a relaxed MILP as a quality measure is revealed by our extensive experimental study, which shows that the methods deployed have complementary strengths depending on the instance parameters. Since the problem description has been obtained from a textile manufacturer where jobs of diverse size arrive continuously under tight deadlines, we also discuss the practical impact of our approach in terms of both tardiness decrease and broader managerial insights

    A strong preemptive relaxation for weighted tardiness and earliness/tardiness problems on unrelated parallel machines

    Get PDF
    Research on due date oriented objectives in the parallel machine environment is at best scarce compared to objectives such as minimizing the makespan or the completion time related performance measures. Moreover, almost all existing work in this area is focused on the identical parallel machine environment. In this study, we leverage on our previous work on the single machine total weighted tardiness (TWT) and total weighted earliness/tardiness (TWET) problems and develop a new preemptive relaxation for the TWT and TWET problems on a bank of unrelated parallel machines. The key contribution of this paper is devising a computationally effective Benders decomposition algorithm for solving the preemptive relaxation formulated as a mixed integer linear program. The optimal solution of the preemptive relaxation provides a tight lower bound. Moreover, it offers a near-optimal partition of the jobs to the machines, and then we exploit recent advances in solving the non-preemptive single machine TWT and TWET problems for constructing non-preemptive solutions of high quality to the original problem. We demonstrate the effectiveness of our approach with instances up to 5 machines and 200 jobs

    Heuristic and Exact Algorithms for the Two-Machine Just in Time Job Shop Scheduling Problem

    Get PDF
    The problem addressed in this paper is the two-machine job shop scheduling problem when the objective is to minimize the total earliness and tardiness from a common due date (CDD) for a set of jobs when their weights equal 1 (unweighted problem). This objective became very significant after the introduction of the Just in Time manufacturing approach. A procedure to determine whether the CDD is restricted or unrestricted is developed and a semirestricted CDD is defined. Algorithms are introduced to find the optimal solution when the CDD is unrestricted and semirestricted. When the CDD is restricted, which is a much harder problem, a heuristic algorithms proposed to find approximate solutions. Through computational experiments, the heuristic algorithms\u27 performance is evaluated with problems up to 500 jobs

    A strong preemptive relaxation for weighted tardiness and earliness/tardiness problems on unrelated parallel machines

    Get PDF
    Research on due date-oriented objectives in the parallel machine environment is at best scarce compared to objectives such as minimizing the makespan or the completion time-related performance measures. Moreover, almost all existing work in this area is focused on the identical parallel machine environment. In this study, we leverage on our previous work on the single machine total weighted tardiness (TWT) and total weighted earliness/tardiness (TWET) problems and develop a new preemptive relaxation for both problems on a bank of unrelated parallel machines. The key contribution of this paper is devising a computationally effective Benders decomposition algorithm to solve the preemptive relaxation formulated as a mixed-integer linear program. The optimal solution of the preemptive relaxation provides a tight lower bound. Moreover, it offers a near-optimal partition of the jobs to the machines. We then exploit recent advances in solving the nonpreemptive single-machine TWT and TWET problems for constructing nonpreemptive solutions of high quality to the original problem. We demonstrate the effectiveness of our approach with instances of up to five machines and 200 jobs

    Exact and Heuristic Algorithms for the Job Shop Scheduling Problem with Earliness and Tardiness Over a Common Due Date

    Get PDF
    Scheduling has turned out to be a fundamental activity for both production and service organizations. As competitive markets emerge, Just-In-Time (JIT) production has obtained more importance as a way of rapidly responding to continuously changing market forces. Due to their realistic assumptions, job shop production environments have gained much research effort among scheduling researchers. This research develops exact and heuristic methods and algorithms to solve the job shop scheduling problem when the objective is to minimize both earliness and tardiness costs over a common due date. The objective function of minimizing earliness and tardiness costs captures the essence of the JIT approach in job shops. A dynamic programming procedure is developed to solve smaller instances of the problem, and a Multi-Agent Systems approach is developed and implemented to solve the problem for larger instances since this problem is known to be NP-Hard in a strong sense. A combinational auction-based approach using a Mixed-Integer Linear Programming (MILP) model to construct and evaluate the bids is proposed. The results showed that the proposed combinational auction-based algorithm is able to find optimal solutions for problems that are balanced in processing times across machines. A price discrimination process is successfully implemented to deal with unbalanced problems. The exact and heuristic procedures developed in this research are the first steps to create a structured approach to handle this problem and as a result, a set of benchmark problems will be available to the scheduling research community
    corecore