120 research outputs found

    Optimal infinite scheduling for multi-priced timed automata

    Get PDF
    This paper is concerned with the derivation of infinite schedules for timed automata that are in some sense optimal. To cover a wide class of optimality criteria we start out by introducing an extension of the (priced) timed automata model that includes both costs and rewards as separate modelling features. A precise definition is then given of what constitutes optimal infinite behaviours for this class of models. We subsequently show that the derivation of optimal non-terminating schedules for such double-priced timed automata is computable. This is done by a reduction of the problem to the determination of optimal mean-cycles in finite graphs with weighted edges. This reduction is obtained by introducing the so-called corner-point abstraction, a powerful abstraction technique of which we show that it preserves optimal schedules

    Time and Cost Optimization of Cyber-Physical Systems by Distributed Reachability Analysis

    Get PDF

    On the analysis of stochastic timed systems

    Get PDF
    The formal methods approach to develop reliable and efficient safety- or performance-critical systems is to construct mathematically precise models of such systems on which properties of interest, such as safety guarantees or performance requirements, can be verified automatically. In this thesis, we present techniques that extend the reach of exhaustive and statistical model checking to verify reachability and reward-based properties of compositional behavioural models that support quantitative aspects such as real time and randomised decisions. We present two techniques that allow sound statistical model checking for the nondeterministic-randomised model of Markov decision processes. We investigate the relationship between two different definitions of the model of probabilistic timed automata, as well as potential ways to apply statistical model checking. Stochastic timed automata allow nondeterministic choices as well as nondeterministic and stochastic delays, and we present the first exhaustive model checking algorithm that allows their analysis. All the approaches introduced in this thesis are implemented as part of the Modest Toolset, which supports the construction and verification of models specified in the formal modelling language Modest. We conclude by applying this language and toolset to study novel distributed control strategies for photovoltaic microgenerators

    Efficient Model Checking: The Power of Randomness

    Get PDF

    Reachability problems for hierarchical piecewise constant derivative systems

    Get PDF
    In this paper, we investigate the computability and complexity of reachability problems for two-dimensional hierarchical piecewise constant derivative (HPCD) systems. The main interest in HPCDs stems from the fact that their reachability problem is on the border between decidability and undecidability, since it is equivalent to that of reachability for one-dimensional piecewise affine maps (PAMs) which is a long standing open problem. Understanding the most expressive hybrid system models that retain decidability for reachability has generated a great deal of interest over the past few years. In this paper, we show a restriction of HPCDs (called RHPCDs) which leads to the reachability problem becoming decidable. We then study which additional powers we must add to the RHPCD model to render it 1D PAM-equivalent. Finally, we show NP-hardness of reachability for nondeterministic RHPCDs

    Efficient Analysis and Synthesis of Complex Quantitative Systems

    Get PDF
    • 

    corecore