780 research outputs found

    Scheduling jobs in computational grid using hybrid ACS and GA approach

    Get PDF
    Metaheuristics algorithms show very good performance in solving various job scheduling problems in computational grid systems.However, due to the complexity and heterogeneous nature of resources in grid computing, stand-alone algorithm is not capable to find a good quality solution in reasonable time.This study proposes a hybrid algorithm, specifically ant colony system and genetic algorithm to solve the job scheduling problem.The high level hybridization algorithm will keep the identity of each algorithm in performing the scheduling task.The study focuses on static grid computing environment and the metrics for optimization are the makespan and flowtime.Experiment results show that the proposed algorithm outperforms other stand-alone algorithms such as ant system, genetic algorithms, and ant colony system for makespan.However, for flowtime, ant system and genetic algorithm perform better

    Hybrid ant colony system and genetic algorithm approach for scheduling of jobs in computational grid

    Get PDF
    Metaheuristic algorithms have been used to solve scheduling problems in grid computing.However, stand-alone metaheuristic algorithms do not always show good performance in every problem instance. This study proposes a high level hybrid approach between ant colony system and genetic algorithm for job scheduling in grid computing.The proposed approach is based on a high level hybridization.The proposed hybrid approach is evaluated using the static benchmark problems known as ETC matrix.Experimental results show that the proposed hybridization between the two algorithms outperforms the stand-alone algorithms in terms of best and average makespan values

    Hybrid ant colony system algorithm for static and dynamic job scheduling in grid computing

    Get PDF
    Grid computing is a distributed system with heterogeneous infrastructures. Resource management system (RMS) is one of the most important components which has great influence on the grid computing performance. The main part of RMS is the scheduler algorithm which has the responsibility to map submitted tasks to available resources. The complexity of scheduling problem is considered as a nondeterministic polynomial complete (NP-complete) problem and therefore, an intelligent algorithm is required to achieve better scheduling solution. One of the prominent intelligent algorithms is ant colony system (ACS) which is implemented widely to solve various types of scheduling problems. However, ACS suffers from stagnation problem in medium and large size grid computing system. ACS is based on exploitation and exploration mechanisms where the exploitation is sufficient but the exploration has a deficiency. The exploration in ACS is based on a random approach without any strategy. This study proposed four hybrid algorithms between ACS, Genetic Algorithm (GA), and Tabu Search (TS) algorithms to enhance the ACS performance. The algorithms are ACS(GA), ACS+GA, ACS(TS), and ACS+TS. These proposed hybrid algorithms will enhance ACS in terms of exploration mechanism and solution refinement by implementing low and high levels hybridization of ACS, GA, and TS algorithms. The proposed algorithms were evaluated against twelve metaheuristic algorithms in static (expected time to compute model) and dynamic (distribution pattern) grid computing environments. A simulator called ExSim was developed to mimic the static and dynamic nature of the grid computing. Experimental results show that the proposed algorithms outperform ACS in terms of best makespan values. Performance of ACS(GA), ACS+GA, ACS(TS), and ACS+TS are better than ACS by 0.35%, 2.03%, 4.65% and 6.99% respectively for static environment. For dynamic environment, performance of ACS(GA), ACS+GA, ACS+TS, and ACS(TS) are better than ACS by 0.01%, 0.56%, 1.16%, and 1.26% respectively. The proposed algorithms can be used to schedule tasks in grid computing with better performance in terms of makespan

    Meta-heuristically seeded genetic algorithm for independent job scheduling in grid computing

    Get PDF
    Grid computing is an infrastructure which connects geographically distributed computers owned by various organizations allowing their resources, such as computational power and storage capabilities, to be shared, selected, and aggregated. Job scheduling problem is one of the most difficult tasks in grid computing systems. To solve this problem efficiently, new methods are required. In this paper, a seeded genetic algorithm is proposed which uses a meta-heuristic algorithm to generate its initial population. To evaluate the performance of the proposed method in terms of minimizing the makespan, the Expected Time to Compute (ETC) simulation model is used to carry out a number of experiments. The results show that the proposed algorithm performs better than other selected techniques

    Ant colony optimization algorithm for dynamic scheduling of jobs in computational grid

    Get PDF
    Computational grid is gaining more importance due to the needs for large-scale computing capacity. In computational grid, job scheduling is one of the main factors affecting grid computing performance. Job scheduling problem is classified as an NP-hard problem.Such a problem can be solved only by using approximate algorithms such as heuristic and meta-heuristic algorithms.Among different optimization algorithms for job scheduling, ant colony system algorithm is a popular meta-heuristic algorithm which has the ability to solve different types of NP-hard problems.However, ant colony system algorithm has a deficiency in its heuristic function which affects the algorithm behavior in terms of finding the shortest connection between edges.This research focuses on a new heuristic function where information about recent ants’ discoveries has been considered.The new heuristic function has been integrated into the classical ant colony system algorithm.Furthermore, the enhanced algorithm has been implemented to solve the travelling salesman problem as well as in scheduling of jobs in computational grid.A simulator with dynamic environment feature to mimic real life application has been development to validate the proposed enhanced ant colony system algorithm. Experimental results show that the proposed enhanced algorithm produced better output in term of utilization and makespan in both domains

    Hybrid meta-heuristic algorithms for independent job scheduling in grid computing

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.The term ’grid computing’ is used to describe an infrastructure that connects geographically distributed computers and heterogeneous platforms owned by multiple organizations allowing their computational power, storage capabilities and other resources to be selected and shared. The job scheduling problem is recognized as being one of the most important and challenging issues in grid computing environments. This paper proposes two strongly coupled hybrid meta-heuristic schedulers. The first scheduler combines Ant Colony Optimisation and Variable Neighbourhood Search in which the former acts as the primary algorithm which, during its execution, calls the latter as a supporting algorithm, while the second merges the Genetic Algorithm with Variable Neighbourhood Search in the same fashion. Several experiments were carried out to analyse the performance of the proposed schedulers in terms of minimizing the makespan using well known benchmarks. The experiments show that the proposed schedulers achieved impressive results compared to other selected approaches from the bibliography

    Enhancement of Ant Colony Optimization for Grid Job Scheduling and Load Balancing

    Get PDF
    Managing resources in grid computing system is complicated due to the distributed and heterogeneous nature of the resources. Stagnation in grid computing system may occur when all jobs are required or are assigned to the same resources which lead to the resources having high workload or the time taken to process a job is high. This research proposes an Enhanced Ant Colony Optimization (EACO) algorithm that caters dynamic scheduling and load balancing in the grid computing system. The proposed algorithm can overcome stagnation problem, minimize processing time, match jobs with suitable resources, and balance entire resources in grid environment. This research follows the experimental research methodology that consists of problem analysis, developing the proposed framework, constructing the simulation environment, conducting a set of experiments and evaluating the results. There are three new mechanisms in this proposed framework that are used to organize the work of an ant colony i.e. initial pheromone value mechanism, resource selection mechanism and pheromone update mechanism. The resource allocation problem is modeled as a graph that can be used by the ant to deliver its pheromone. This graph consists of four types of vertices which are job, requirement, resource and capacity that are used in constructing the grid job scheduling. The proposed EACO algorithm takes into consideration the capacity of resources and the characteristics of jobs in determining the best resource to process a job. EACO selects the resources based on the pheromone value on each resource which is recorded in a matrix form. The initial pheromone value of each resource for each job is calculated based on the estimated transmission time and execution time of a given job. Resources with high pheromone value are selected to process the submitted jobs. Global pheromone update is performed after the completion of processing the jobs in order to reduce the pheromone value of resources. A simulation environment was developed using Java programming to test the performance of the proposed EACO algorithm against existing grid resource management algorithms such as Antz algorithm, Particle Swarm Optimization algorithm, Space Shared algorithm and Time Shared algorithm, in terms of processing time and resource utilization. Experimental results show that EACO produced better grid resource management solution compared to other algorithms

    An enhanced ant colony system algorithm for dynamic fault tolerance in grid computing

    Get PDF
    Fault tolerance in grid computing allows the system to continue operate despite occurrence of failure. Most fault tolerance algorithms focus on fault handling techniques such as task reprocessing, checkpointing, task replication, penalty, and task migration. Ant colony system (ACS), a variant of ant colony optimization (ACO), is one of the promising algorithms for fault tolerance due to its ability to adapt to both static and dynamic combinatorial optimization problems. However, ACS algorithm does not consider the resource fitness during task scheduling which leads to poor load balancing and lower execution success rate. This research proposes dynamic ACS fault tolerance with suspension (DAFTS) in grid computing that focuses on providing effective fault tolerance techniques to improve the execution success rate and load balancing. The proposed algorithm consists of dynamic evaporation rate, resource fitness-based scheduling process, enhanced pheromone update with trust factor and suspension, and checkpoint-based task reprocessing. The research framework consists of four phases which are identifying fault tolerance techniques, enhancing resource assignment and job scheduling, improving fault tolerance algorithm and, evaluating the performance of the proposed algorithm. The proposed algorithm was developed in a simulated grid environment called GridSim and evaluated against other fault tolerance algorithms such as trust-based ACO, fault tolerance ACO, ACO without fault tolerance and ACO with fault tolerance in terms of total execution time, average latency, average makespan, throughput, execution success rate and load balancing. Experimental results showed that the proposed algorithm achieved the best performance in most aspects, and second best in terms of load balancing. The DAFTS achieved the smallest increase on execution time, average makespan and average latency by 7%, 11% and 5% respectively, and smallest decrease on throughput and execution success rate by 6.49% and 9% respectively as the failure rate increases. The DAFTS also achieved the smallest increment on execution time, average makespan and average latency by 5.8, 8.5 and 8.7 times respectively, and highest increase on throughput and highest execution success rate by 72.9% and 93.7% respectively as the number of jobs increases. The proposed algorithm can effectively overcome load balancing problems and increase execution success rates in distributed systems that are prone to faults

    Grid load balancing using ant colony optimization

    Get PDF
    An enhanced ant colony optimization technique for jobs and resources scheduling in grid computing is proposed in this paper. The proposed technique combines the techniques from Ant Colony System and Max – Min Ant System and focused on local pheromone trail update and trail limit. The agent concept is also integrated in this proposed technique for the purpose of updating the grid resource table. This facilitates in scheduling jobs to available resources efficiently which will enable jobs to be processed in minimum time and also balance all the resource in grid system
    • …
    corecore