133,107 research outputs found

    Simulation of multi-core scheduling in real-time embedded systems

    Get PDF
    In real-time systems the correctness of a system depends not only on the logical correctness of the running program but also on the time at which the logically correct output is produced. Therefore, in such a system it is necessary to provide the right computational result within a strict time limit called the deadline of a task. In hard real-time systems the deadline of a task must not be missed, whereas in soft real-time systems it can be missed occasionally. In recent years the trend has been observed which shows a shift from single-core to multi-core architectures for real-time systems. The main point of this thesis is to study a few promising multi-core scheduling algorithms both from the partitioned and the global approaches to multi-core scheduling and implement some of them into the existing simulation software. To represent the partitioned approach, Partitioned EDF has been implemented with the capability of specification of a resource access protocol for each core. The partitioned approach requires heuristics for task partitioning, the problem known to be NP-hard in the strong sense. For this reason, the implementation of Partitioned EDF requires manual task partitioning of the system in order to be able to utilize the maximum processing power. Proportionate Fair abbreviated as Pfair is the only known optimal way to schedule a set of periodic tasks on multi-core systems that falls into the global approach of multi-core scheduling. Therefore, to represent the global approach, several variants of Pfair scheduling algorithm have been selected for the implementation into the existing system. To be truly useful in practice, a real-time multi-core scheduling algorithm should support access to shared resources using some resource access protocol. For this reason, the Flexible Multiprocessor Locking Protocol abbreviated as FMLP has been studied and implemented to simulate shared resource access on multi-core systems. This resource access protocol can be used by scheduling algorithms representing both the partitioned and global approaches, but it only supports such variants of those algorithms which allow non-preemptive execution. A variant of Global EDF termed Global Suspendable Non-preemptive EDF was implemented prior to implementing FMLP. The existing simulator provided a set of single-core and some basic multi-core scheduling algorithms for scheduling real-time task sets. No schedulability analysis was implemented in the previous work. So, as part of this thesis, the schedulability analysis for single core scheduling algorithms has been implemented. A schedulability analysis for the partitioned approach of multi-core scheduling has also been provided for systems where a single-core scheduling algorithm runs on each partition. The updated simulation software also supports self-suspension of tasks for a specified duration

    Interference-Aware Schedulability Analysis and Task Allocation for Multicore Hard Real-Time Systems

    Full text link
    [EN] There has been a trend towards using multicore platforms for real-time embedded systems due to their high computing performance. In the scheduling of a multicore hard real-time system, there are interference delays due to contention of shared hardware resources. The main sources of interference are memory, cache memory, and the shared memory bus. These interferences are a great source of unpredictability and they are not always taken into account. Recent papers have proposed task models and schedulability algorithms to account for this interference delay. The aim of this paper is to provide a schedulability analysis for a task model that incorporates interference delay, for both fixed and dynamic priorities. We assume an implicit deadline task model. We rely on a task model where this interference is integrated in a general way, without depending on a specific type of hardware resource. There are similar approaches, but they consider fixed priorities. An allocation algorithm to minimise this interference (Imin) is also proposed and compared with existing allocators. The results show how Imin has the best rates in terms of percentages of schedulability and increased utilisation. In addition, Imin presents good results in terms of solution times.This work was supported under Grant PLEC2021-007609 funded by MCIN/ AEI/ 10.13039/ 501100011033 and by the "European Union NextGenerationEU/PRTR".Aceituno-Peinado, JM.; Guasque Ortega, A.; Balbastre, P.; SimĂł Ten, JE.; Crespo, A. (2022). Interference-Aware Schedulability Analysis and Task Allocation for Multicore Hard Real-Time Systems. Electronics. 11(9):1-21. https://doi.org/10.3390/electronics1109131312111

    Composition and synchronization of real-time components upon one processor

    Get PDF
    Many industrial systems have various hardware and software functions for controlling mechanics. If these functions act independently, as they do in legacy situations, their overall performance is not optimal. There is a trend towards optimizing the overall system performance and creating a synergy between the different functions in a system, which is achieved by replacing more and more dedicated, single-function hardware by software components running on programmable platforms. This increases the re-usability of the functions, but their synergy requires also that (parts of) the multiple software functions share the same embedded platform. In this work, we look at the composition of inter-dependent software functions on a shared platform from a timing perspective. We consider platforms comprised of one preemptive processor resource and, optionally, multiple non-preemptive resources. Each function is implemented by a set of tasks; the group of tasks of a function that executes on the same processor, along with its scheduler, is called a component. The tasks of a component typically have hard timing constraints. Fulfilling these timing constraints of a component requires analysis. Looking at a single function, co-operative scheduling of the tasks within a component has already proven to be a powerful tool to make the implementation of a function more predictable. For example, co-operative scheduling can accelerate the execution of a task (making it easier to satisfy timing constraints), it can reduce the cost of arbitrary preemptions (leading to more realistic execution-time estimates) and it can guarantee access to other resources without the need for arbitration by other protocols. Since timeliness is an important functional requirement, (re-)use of a component for composition and integration on a platform must deal with timing. To enable us to analyze and specify the timing requirements of a particular component in isolation from other components, we reserve and enforce the availability of all its specified resources during run-time. The real-time systems community has proposed hierarchical scheduling frameworks (HSFs) to implement this isolation between components. After admitting a component on a shared platform, a component in an HSF keeps meeting its timing constraints as long as it behaves as specified. If it violates its specification, it may be penalized, but other components are temporally isolated from the malignant effects. A component in an HSF is said to execute on a virtual platform with a dedicated processor at a speed proportional to its reserved processor supply. Three effects disturb this point of view. Firstly, processor time is supplied discontinuously. Secondly, the actual processor is faster. Thirdly, the HSF no longer guarantees the isolation of an individual component when two arbitrary components violate their specification during access to non-preemptive resources, even when access is arbitrated via well-defined real-time protocols. The scientific contributions of this work focus on these three issues. Our solutions to these issues cover the system design from component requirements to run-time allocation. Firstly, we present a novel scheduling method that enables us to integrate the component into an HSF. It guarantees that each integrated component executes its tasks exactly in the same order regardless of a continuous or a discontinuous supply of processor time. Using our method, the component executes on a virtual platform and it only experiences that the processor speed is different from the actual processor speed. As a result, we can focus on the traditional scheduling problem of meeting deadline constraints of tasks on a uni-processor platform. For such platforms, we show how scheduling tasks co-operatively within a component helps to meet the deadlines of this component. We compare the strength of these cooperative scheduling techniques to theoretically optimal schedulers. Secondly, we standardize the way of computing the resource requirements of a component, even in the presence of non-preemptive resources. We can therefore apply the same timing analysis to the components in an HSF as to the tasks inside, regardless of their scheduling or their protocol being used for non-preemptive resources. This increases the re-usability of the timing analysis of components. We also make non-preemptive resources transparent during the development cycle of a component, i.e., the developer of a component can be unaware of the actual protocol being used in an HSF. Components can therefore be unaware that access to non-preemptive resources requires arbitration. Finally, we complement the existing real-time protocols for arbitrating access to non-preemptive resources with mechanisms to confine temporal faults to those components in the HSF that share the same non-preemptive resources. We compare the overheads of sharing non-preemptive resources between components with and without mechanisms for confinement of temporal faults. We do this by means of experiments within an HSF-enabled real-time operating system

    Predictable embedded multiprocessor architecture for streaming applications

    Get PDF
    The focus of this thesis is on embedded media systems that execute applications from the application domain car infotainment. These applications, which we refer to as jobs, typically fall in the class of streaming, i.e. they process on a stream of data. The jobs are executed on heterogeneous multiprocessor platforms, for performance and power efficiency reasons. Most of these jobs have firm real-time requirements, like throughput and end-to-end latency. Car-infotainment systems become increasingly more complex, due to an increase in the supported number of jobs and an increase of resource sharing. Therefore, it is hard to verify, for each job, that the realtime requirements are satisfied. To reduce the verification effort, we elaborate on an architecture for a predictable system from which we can verify, at design time, that the job’s throughput and end-to-end latency requirements are satisfied. This thesis introduces a network-based multiprocessor system that is predictable. This is achieved by starting with an architecture where processors have private local memories and execute tasks in a static order, so that the uncertainty in the temporal behaviour is minimised. As an interconnect, we use a network that supports guaranteed communication services so that it is guaranteed that data is delivered in time. The architecture is extended with shared local memories, run-time scheduling of tasks, and a memory hierarchy. Dataflow modelling and analysis techniques are used for verification, because they allow cyclic data dependencies that influence the job’s performance. Shown is how to construct a dataflow model from a job that is mapped onto our predictable multiprocessor platforms. This dataflow model takes into account: computation of tasks, communication between tasks, buffer capacities, and scheduling of shared resources. The job’s throughput and end-to-end latency bounds are derived from a self-timed execution of the dataflow graph, by making use of existing dataflow-analysis techniques. It is shown that the derived bounds are tight, e.g. for our channel equaliser job, the accuracy of the derived throughput bound is within 10.1%. Furthermore, it is shown that the dataflow modelling and analysis techniques can be used despite the use of shared memories, run-time scheduling of tasks, and caches

    The stack resource protocol based on real time transactions

    Get PDF
    Current hard real time (HRT) kernels have their timely behaviour guaranteed at the cost of a rather restrictive use of the available resources. This makes current HRT scheduling techniques inadequate for use in a multimedia environment where one can profit by a better and more flexible use of the resources. It is shown that one can improve the flexibility and efficiency of real time kernels and a method is proposed for precise quality of service schedulability analysis of the stack resource protocol. This protocol is generalised by introducing real time transactions, which makes its use straightforward and efficient. Transactions can be refined to nested critical sections if the smallest estimation of blocking is desired. The method can be used for hard real time systems in general and for multimedia systems in particular

    Flexible Scheduling in Multimedia Kernels: an Overview

    Get PDF
    Current Hard Real-Time (HRT) kernels have their timely behaviour guaranteed on the cost of a rather restrictive use of the available resources. This makes current HRT scheduling techniques inadequate for use in a multimedia environment where we can make a considerable profit by a better and more flexible use of the resources. We will show that we can improve the flexibility and efficiency of multimedia kernels. Therefore we introduce Real Time Transactions (RTT) with Deadline Inheritance policies for a small class of scheduling algorithms and we will evaluate these algorithms for use in a multimedia environmen

    Qos-aware fine-grained power management in networked computing systems

    Get PDF
    Power is a major design concern of today\u27s networked computing systems, from low-power battery-powered mobile and embedded systems to high-power enterprise servers. Embedded systems are required to be power efficiency because most embedded systems are powered by battery with limited capacity. Similar concern of power expenditure rises as well in enterprise server environments due to cooling requirement, power delivery limit, electricity costs as well as environment pollutions. The power consumption in networked computing systems includes that on circuit board and that for communication. In the context of networked real-time systems, the power dissipation on wireless communication is more significant than that on circuit board. We focus on packet scheduling for wireless real-time systems with renewable energy resources. In such a scenario, it is required to transmit data with higher level of importance periodically. We formulate this packet scheduling problem as an NP-hard reward maximization problem with time and energy constraints. An optimal solution with pseudo polynomial time complexity is presented. In addition, we propose a sub-optimal solution with polynomial time complexity. Circuit board, especially processor, power consumption is still the major source of system power consumption. We provide a general-purposed, practical and comprehensive power management middleware for networked computing systems to manage circuit board power consumption thus to affect system-level power consumption. It has the functionalities of power and performance monitoring, power management (PM) policy selection and PM control, as well as energy efficiency analysis. This middleware includes an extensible PM policy library. We implemented a prototype of this middleware on Base Band Units (BBUs) with three PM policies enclosed. These policies have been validated on different platforms, such as enterprise servers, virtual environments and BBUs. In enterprise environments, the power dissipation on circuit board dominates. Regulation on computing resources on board has a significant impact on power consumption. Dynamic Voltage and Frequency Scaling (DVFS) is an effective technique to conserve energy consumption. We investigate system-level power management in order to avoid system failures due to power capacity overload or overheating. This management needs to control the power consumption in an accurate and responsive manner, which cannot be achieve by the existing black-box feedback control. Thus we present a model-predictive feedback controller to regulate processor frequency so that power budget can be satisfied without significant loss on performance. In addition to providing power guarantee alone, performance with respect to service-level agreements (SLAs) is required to be guaranteed as well. The proliferation of virtualization technology imposes new challenges on power management due to resource sharing. It is hard to achieve optimization in both power and performance on shared infrastructures due to system dynamics. We propose vPnP, a feedback control based coordination approach providing guarantee on application-level performance and underlying physical host power consumption in virtualized environments. This system can adapt gracefully to workload change. The preliminary results show its flexibility to achieve different levels of tradeoffs between power and performance as well as its robustness over a variety of workloads. It is desirable for improve energy efficiency of systems, such as BBUs, hosting soft-real time applications. We proposed a power management strategy for controlling delay and minimizing power consumption using DVFS. We use the Robbins-Monro (RM) stochastic approximation method to estimate delay quantile. We couple a fuzzy controller with the RM algorithm to scale CPU frequency that will maintain performance within the specified QoS

    Real Time in Plan 9

    Get PDF
    We describe our experience with the implementation and use of a hard-real-time scheduler for use in Plan 9 as an embedded operating system
    • 

    corecore