8,930 research outputs found

    A linear programming-based method for job shop scheduling

    Get PDF
    We present a decomposition heuristic for a large class of job shop scheduling problems. This heuristic utilizes information from the linear programming formulation of the associated optimal timing problem to solve subproblems, can be used for any objective function whose associated optimal timing problem can be expressed as a linear program (LP), and is particularly effective for objectives that include a component that is a function of individual operation completion times. Using the proposed heuristic framework, we address job shop scheduling problems with a variety of objectives where intermediate holding costs need to be explicitly considered. In computational testing, we demonstrate the performance of our proposed solution approach

    An investigation into minimising total energy consumption and total completion time in a flexible job shop for recycling carbon fiber reinforced polymer

    Get PDF
    The increased use of carbon fiber reinforced polymer (CFRP) in industry coupled with European Union restrictions on landfill disposal has resulted in a need to develop relevant recycling technologies. Several methods, such as mechanical grinding, thermolysis and solvolysis, have been tried to recover the carbon fibers. Optimisation techniques for reducing energy consumed by above processes have also been developed. However, the energy efficiency of recycling CFRP at the workshop level has never been considered before. An approach to incorporate energy reduction into consideration while making the scheduling plans for a CFRP recycling workshop is presented in this paper. This research sets in a flexible job shop circumstance, model for the bi-objective problem that minimise total processing energy consumption and makespan is developed. A modified Genetic Algorithm for solving the raw material lot splitting problem is developed. A case study of the lot sizing problem in the flexible job shop for recycling CFRP is presented to show how scheduling plans affect energy consumption, and to prove the feasibility of the model and the developed algorithm

    A tabu search procedure for generating robust project baseline schedules under stochastic resource availabilities.

    Get PDF
    The majority of research efforts in project scheduling assume a static and deterministic environment with complete information. In practice, however, these assumptions will hardly, if ever, be satisfied. Proactive scheduling aims at the generation of robust baseline schedules that are as much as possible protected against anticipated disruptions that may occur during project execution. In this paper, we focus on disruptions that may be caused by stochastic resource availabilities and aim at generating stable baseline schedules, where the solution robustness (stability) of the baseline schedule is measured by the weighted deviation between the planned and the actually realized activity starting times during project execution. We present a tabu search procedure that operates on a surrogate free slack based objective function. The effectiveness of the procedure is demonstrated by extensive computational results obtained on a set of randomly generated test instances.

    A tabu search procedure for developing robust predicitive project schedules.

    Get PDF
    Proactive scheduling aims at the generation of robust baseline schedules that are as much as possible protected against disruptions that may occur during project execution. In this paper, we focus on disruptions caused by stochastic resource availabilities and aim at generating stable baseline schedules. A schedule’s robustness (stability) is measured by the weighted deviation between the planned and the actually realized activity starting times during project execution. We present a tabu search procedure that operates on a surrogate, free slack based objective function. Its effectiveness is demonstrated by extensive computational results obtained on a set of randomly generated test instances.Project scheduling; Robustness; Proactive; Stability;

    Dynamic resource constrained multi-project scheduling problem with weighted earliness/tardiness costs

    Get PDF
    In this study, a conceptual framework is given for the dynamic multi-project scheduling problem with weighted earliness/tardiness costs (DRCMPSPWET) and a mathematical programming formulation of the problem is provided. In DRCMPSPWET, a project arrives on top of an existing project portfolio and a due date has to be quoted for the new project while minimizing the costs of schedule changes. The objective function consists of the weighted earliness tardiness costs of the activities of the existing projects in the current baseline schedule plus a term that increases linearly with the anticipated completion time of the new project. An iterated local search based approach is developed for large instances of this problem. In order to analyze the performance and behavior of the proposed method, a new multi-project data set is created by controlling the total number of activities, the due date tightness, the due date range, the number of resource types, and the completion time factor in an instance. A series of computational experiments are carried out to test the performance of the local search approach. Exact solutions are provided for the small instances. The results indicate that the local search heuristic performs well in terms of both solution quality and solution time

    Strengthening Construction Management in the Rural Rehab Line of Business

    Get PDF
    The Five Key ObservationsObservation#1: Rural rehab success emanated from positive thinking and persistent implementationObservation #2: Almost every RHRO would benefit from a substantial increase in the per unit funding available, especially in light of the forthcoming HUD HOME requirement to establish written rehab standards in ten subcategories.Observation #3: A smartphone and tablet with 20 to 40 apps is the rehab specialist's Swiss Army knife. They are our, GPS, calculator, spec writer, office lifeline in case of danger, camera, clock, cost estimator calendar and a hundred other single-purpose but very important uses.Observation #4: NeighborWorks® Rural Initiative could provide a clearinghouse for success techniques targeted to rural rehab. Each month it might focus on a specific aspect of rehab management; inspection checklists in January, green specs in February, feasibility checklist in March, contractor qualification questionnaires in April and so on.Observation #5: Even with most components of in-house contractor success formula in place, per the Statistic Research Institute 53% of construction firms go out of business with in the first 4 years. It remains a very risky model that requires significant; funding, staff experience, administrative support and risk tolerance.Three Rehab Production Models And Their AlternativesThis middle section restates the introduction and methodology and offers a detailed review of the Traditional Rehab Specialist, Construction Management Of Subcontractor and the In-House General Contractor production models .for each model the article provides: definition and staffing pattern, design roles and tasks for each major player, benefits and challenges, alternative models and finally recommendations for successful implementationFocus TopicsDuring our interview process, three ideas surfaced that were best served with a mini discussion of the topic rather than being embedded in the already large middle section.The three topics are; software and technology, management of community relations – marketing and quality control, and budget solution

    A hybrid shifting bottleneck-tabu search heuristic for the job shop total weighted tardiness problem

    Get PDF
    In this paper, we study the job shop scheduling problem with the objective of minimizing the total weighted tardiness. We propose a hybrid shifting bottleneck - tabu search (SB-TS) algorithm by replacing the reoptimization step in the shifting bottleneck (SB) algorithm by a tabu search (TS). In terms of the shifting bottleneck heuristic, the proposed tabu search optimizes the total weighted tardiness for partial schedules in which some machines are currently assumed to have infinite capacity. In the context of tabu search, the shifting bottleneck heuristic features a long-term memory which helps to diversify the local search. We exploit this synergy to develop a state-of-the-art algorithm for the job shop total weighted tardiness problem (JS-TWT). The computational effectiveness of the algorithm is demonstrated on standard benchmark instances from the literature

    Efficient job scheduling for a cellular manufacturing environment

    Get PDF
    An important aspect of any manufacturing environment is efficient job scheduling. With an increase in manufacturing facilities focused on producing goods with a cellular manufacturing approach, the need arises to schedule jobs optimally into cells at a specific time. A mathematical model has been developed to represent a standard cellular manufacturing job scheduling problem. The model incorporates important parameters of the jobs and the cells along with other system constraints. With each job and each cell having its own distinguishing parameters, the task of scheduling jobs via integer linear programming quickly becomes very difficult and time-consuming. In fact, such a job scheduling problem is of the NP-Complete complexity class. In an attempt to solve the problem within an acceptable amount of time, several heuristics have been developed to be applied to the model and examined for problems of different sizes and difficulty levels, culminating in an ultimate heuristic that can be applied to most size problems. The ultimate heuristic uses a greedy multi-phase iterative process to first assign jobs to particular cells and then to schedule the jobs within the assigned cells. The heuristic relaxes several variables and constraints along the way, while taking into account the flexibility of the different jobs and the current load of the different cells. Testing and analysis shows that when the heuristic is applied to various size job scheduling problems, the solving time is significantly decreased, while still resulting in a near optimal solution. ii
    corecore