4 research outputs found

    Adaptive structured parallelism

    Get PDF
    Algorithmic skeletons abstract commonly-used patterns of parallel computation, communication, and interaction. Parallel programs are expressed by interweaving parameterised skeletons analogously to the way in which structured sequential programs are developed, using well-defined constructs. Skeletons provide top-down design composition and control inheritance throughout the program structure. Based on the algorithmic skeleton concept, structured parallelism provides a high-level parallel programming technique which allows the conceptual description of parallel programs whilst fostering platform independence and algorithm abstraction. By decoupling the algorithm specification from machine-dependent structural considerations, structured parallelism allows programmers to code programs regardless of how the computation and communications will be executed in the system platform.Meanwhile, large non-dedicated multiprocessing systems have long posed a challenge to known distributed systems programming techniques as a result of the inherent heterogeneity and dynamism of their resources. Scant research has been devoted to the use of structural information provided by skeletons in adaptively improving program performance, based on resource utilisation. This thesis presents a methodology to improve skeletal parallel programming in heterogeneous distributed systems by introducing adaptivity through resource awareness. As we hypothesise that a skeletal program should be able to adapt to the dynamic resource conditions over time using its structural forecasting information, we have developed ASPara: Adaptive Structured Parallelism. ASPara is a generic methodology to incorporate structural information at compilation into a parallel program, which will help it to adapt at execution

    Scheduling for Large Scale Distributed Computing Systems: Approaches and Performance Evaluation Issues

    Get PDF
    Although our everyday life and society now depends heavily oncommunication infrastructures and computation infrastructures,scientists and engineers have always been among the main consumers ofcomputing power. This document provides a coherent overview of theresearch I have conducted in the last 15 years and which targets themanagement and performance evaluation of large scale distributedcomputing infrastructures such as clusters, grids, desktop grids,volunteer computing platforms, ... when used for scientific computing.In the first part of this document, I present how I have addressedscheduling problems arising on distributed platforms (like computinggrids) with a particular emphasis on heterogeneity and multi-userissues, hence in connection with game theory. Most of these problemsare relaxed from a classical combinatorial optimization formulationinto a continuous form, which allows to easily account for keyplatform characteristics such as heterogeneity or complex topologywhile providing efficient practical and distributed solutions.The second part presents my main contributions to the SimGrid project,which is a simulation toolkit for building simulators of distributedapplications (originally designed for scheduling algorithm evaluationpurposes). It comprises a unified presentation of how the questions ofvalidation and scalability have been addressed in SimGrid as well asthoughts on specific challenges related to methodological aspects andto the application of SimGrid to the HPC context

    Scheduling divisibleworkloads on heterogeneous platforms under bounded multi-port model

    No full text
    International audienceIn this paper, we discuss complexity issues for scheduling divisible workloads on heterogeneous systems under the bounded multi-port model. To our best knowledge, this paper is the first attempt to consider divisible load scheduling under a realistic communication model, where the master node can communicate simultaneously to several slaves, provided that bandwidth constraints are not exceeded. In this paper, we concentrate on one round distribution schemes, where a given node starts its processing only once all data has been received. Our main contributions are (i) the proof that processors start working immediately after receiving their work (ii) the study of the optimal schedule in the case of 2 processors and (iii) the proof that scheduling divisible load under the bounded multi-port model is NP-complete. This last result strongly differs from divisible load literature and represents the first NP-completeness result when latencies are not taken into account
    corecore