4,427 research outputs found

    The Glasgow Parallel Reduction Machine: Programming Shared-memory Many-core Systems using Parallel Task Composition

    Get PDF
    We present the Glasgow Parallel Reduction Machine (GPRM), a novel, flexible framework for parallel task-composition based many-core programming. We allow the programmer to structure programs into task code, written as C++ classes, and communication code, written in a restricted subset of C++ with functional semantics and parallel evaluation. In this paper we discuss the GPRM, the virtual machine framework that enables the parallel task composition approach. We focus the discussion on GPIR, the functional language used as the intermediate representation of the bytecode running on the GPRM. Using examples in this language we show the flexibility and power of our task composition framework. We demonstrate the potential using an implementation of a merge sort algorithm on a 64-core Tilera processor, as well as on a conventional Intel quad-core processor and an AMD 48-core processor system. We also compare our framework with OpenMP tasks in a parallel pointer chasing algorithm running on the Tilera processor. Our results show that the GPRM programs outperform the corresponding OpenMP codes on all test platforms, and can greatly facilitate writing of parallel programs, in particular non-data parallel algorithms such as reductions.Comment: In Proceedings PLACES 2013, arXiv:1312.221

    CoreTSAR: Task Scheduling for Accelerator-aware Runtimes

    Get PDF
    Heterogeneous supercomputers that incorporate computational accelerators such as GPUs are increasingly popular due to their high peak performance, energy efficiency and comparatively low cost. Unfortunately, the programming models and frameworks designed to extract performance from all computational units still lack the flexibility of their CPU-only counterparts. Accelerated OpenMP improves this situation by supporting natural migration of OpenMP code from CPUs to a GPU. However, these implementations currently lose one of OpenMP’s best features, its flexibility: typical OpenMP applications can run on any number of CPUs. GPU implementations do not transparently employ multiple GPUs on a node or a mix of GPUs and CPUs. To address these shortcomings, we present CoreTSAR, our runtime library for dynamically scheduling tasks across heterogeneous resources, and propose straightforward extensions that incorporate this functionality into Accelerated OpenMP. We show that our approach can provide nearly linear speedup to four GPUs over only using CPUs or one GPU while increasing the overall flexibility of Accelerated OpenMP

    Parallel Sort-Based Matching for Data Distribution Management on Shared-Memory Multiprocessors

    Full text link
    In this paper we consider the problem of identifying intersections between two sets of d-dimensional axis-parallel rectangles. This is a common problem that arises in many agent-based simulation studies, and is of central importance in the context of High Level Architecture (HLA), where it is at the core of the Data Distribution Management (DDM) service. Several realizations of the DDM service have been proposed; however, many of them are either inefficient or inherently sequential. These are serious limitations since multicore processors are now ubiquitous, and DDM algorithms -- being CPU-intensive -- could benefit from additional computing power. We propose a parallel version of the Sort-Based Matching algorithm for shared-memory multiprocessors. Sort-Based Matching is one of the most efficient serial algorithms for the DDM problem, but is quite difficult to parallelize due to data dependencies. We describe the algorithm and compute its asymptotic running time; we complete the analysis by assessing its performance and scalability through extensive experiments on two commodity multicore systems based on a dual socket Intel Xeon processor, and a single socket Intel Core i7 processor.Comment: Proceedings of the 21-th ACM/IEEE International Symposium on Distributed Simulation and Real Time Applications (DS-RT 2017). Best Paper Award @DS-RT 201

    A Comparison of some recent Task-based Parallel Programming Models

    Get PDF
    The need for parallel programming models that are simple to use and at the same time efficient for current ant future parallel platforms has led to recent attention to task-based models such as Cilk++, Intel TBB and the task concept in OpenMP version 3.0. The choice of model and implementation can have a major impact on the final performance and in order to understand some of the trade-offs we have made a quantitative study comparing four implementations of OpenMP (gcc, Intel icc, Sun studio and the research compiler Mercurium/nanos mcc), Cilk++ and Wool, a high-performance task-based library developed at SICS. Abstract. We use microbenchmarks to characterize costs for task-creation and stealing and the Barcelona OpenMP Tasks Suite for characterizing application performance. By far Wool and Cilk++ have the lowest overhead in both spawning and stealing tasks. This is reflected in application performance when many tasks with small granularity are spawned where Cilk++ and, in particular, has the highest performance. For coarse granularity applications, the OpenMP implementations have quite similar performance as the more light-weight Cilk++ and Wool except for one application where mcc is superior thanks to a superior task scheduler. Abstract. The OpenMP implemenations are generally not yet ready for use when the task granularity becomes very small. There is no inherent reason for this, so we expect future implementations of OpenMP to focus on this issue
    • …
    corecore