1,306 research outputs found

    NoCo: ILP-based worst-case contention estimation for mesh real-time manycores

    Get PDF
    Manycores are capable of providing the computational demands required by functionally-advanced critical applications in domains such as automotive and avionics. In manycores a network-on-chip (NoC) provides access to shared caches and memories and hence concentrates most of the contention that tasks suffer, with effects on the worst-case contention delay (WCD) of packets and tasks' WCET. While several proposals minimize the impact of individual NoC parameters on WCD, e.g. mapping and routing, there are strong dependences among these NoC parameters. Hence, finding the optimal NoC configurations requires optimizing all parameters simultaneously, which represents a multidimensional optimization problem. In this paper we propose NoCo, a novel approach that combines ILP and stochastic optimization to find NoC configurations in terms of packet routing, application mapping, and arbitration weight allocation. Our results show that NoCo improves other techniques that optimize a subset of NoC parameters.This work has been partially supported by the Spanish Ministry of Economy and Competitiveness under grant TIN2015- 65316-P and the HiPEAC Network of Excellence. It also received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (agreement No. 772773). Carles Hernández is jointly supported by the MINECO and FEDER funds through grant TIN2014-60404-JIN. Jaume Abella has been partially supported by the Spanish Ministry of Economy and Competitiveness under Ramon y Cajal postdoctoral fellowship number RYC-2013-14717. Enrico Mezzetti has been partially supported by the Spanish Ministry of Economy and Competitiveness under Juan de la Cierva-Incorporaci´on postdoctoral fellowship number IJCI-2016-27396.Peer ReviewedPostprint (author's final draft

    Performance analysis of a Master/Slave switched Ethernet for military embedded applications

    Get PDF
    Current military communication network is a generation old and is no longer effective in meeting the emerging requirements imposed by the next generation military embedded applications. A new communication network based upon Full Duplex Switched Ethernet is proposed in this paper to overcome these limitations. To allow existing military subsystems to be easily supported by a Switched Ethernet network, our proposal consists in keeping their current centralized communication scheme by using an optimized master/slave transmission control on Switched Ethernet thanks to the Flexible Time Triggered (FTT) paradigm. Our main objective is to assess the performance of such a proposal and estimate the quality of service we can expect in terms of latency. Using the Network Calculus formalism, schedulability analysis are determined. These analysis are illustrated in the case of a realistic military embedded application extracted from a real military aircraft network, to highlight the proposal's ability to support the required time constrained communications

    Exploring Alternatives to use Master/Slave Full Duplex Switched Ethernet for Avionics Embedded Applications

    Get PDF
    The complexity of distributed real-time systems, including military embedded applications, is increasing due to an increasing number of nodes, their functionality and higher amounts of exchanged data. This higher complexity imposes major development challenges when nonfunctional properties must be enforced. On the other hand, the current military communication networks are a generation old and are no longer effective in facing such increasingly complex requirements. A new communication network, based on Full Duplex Switched Ethernet and Master/slave approach, has been proposed previously. However, this initial approach is not efficient in terms of network bandwidth utilization. In this paper we propose two new alternative approaches that can use the network bandwidth more efficiently. In addition we provide a preliminary qualitative assessment of the three approaches concerning different factors such as performance, scalability, complexity and flexibility

    Securing Real-Time Internet-of-Things

    Full text link
    Modern embedded and cyber-physical systems are ubiquitous. A large number of critical cyber-physical systems have real-time requirements (e.g., avionics, automobiles, power grids, manufacturing systems, industrial control systems, etc.). Recent developments and new functionality requires real-time embedded devices to be connected to the Internet. This gives rise to the real-time Internet-of-things (RT-IoT) that promises a better user experience through stronger connectivity and efficient use of next-generation embedded devices. However RT- IoT are also increasingly becoming targets for cyber-attacks which is exacerbated by this increased connectivity. This paper gives an introduction to RT-IoT systems, an outlook of current approaches and possible research challenges towards secure RT- IoT frameworks

    Heterogeneous models and analyses in the design of real-time embedded systems - an avionic case-study

    Get PDF
    The development of embedded systems according to Model-Driven Development relies on two complementary activities: system mod- eling on the one hand and analysis of the non-functional properties, such as timing properties, on the other hand. Yet, the coupling be- tween models and analyses remains largely disregarded so far: e.g. how to apply an analysis on a model? How to manage the analysis process? This paper presents an application of our research on this topic. In particular, we show that our approach makes it possible to combine heterogeneous models and analyses in the design of an avionic system. We use two languages to model the system at di erent levels of abstraction: the industry standard AADL (Ar- chitecture Analysis and Design Language) and the more recent implementation-oriented CPAL language (Cyber-Physical Action Language). We then combine di erent real-time scheduling analy- ses so as to gradually de ne the task and network parameters and nally validate the schedulability of all activities of the system

    Gateway optimization for an heterogeneous avionics network AFDX-CAN

    Get PDF
    The gateway impact on the end to end system performances is a major challenge in the design process of heterogeneous embedded systems. In this paper, this problem is tackled for a specific avionics network AFDX with CAN to identify the main interconnection issues. The results herein show the possible enhancements of the system performances thanks to an optimized gateway based on a frames pooling strategy, compared to a basic gateway

    A Feasible Configuration of AFDX Networks for Real-Time Flows in Avionics Systems

    Get PDF
    REACTION 2013. 2nd International Workshop on Real-time and distributed computing in emerging applications. December 3rd, 2013, Vancouver, Canada.AFDX (Avionics Full Duplex Switched Ethernet) Networks have been proposed to meet unique ADN (Aircraft Data Networks) characteristics and then standardized as a Part 7 in ARNIC 664. As for this new communication technology, some research works have been conducted to address design issues such as optimizing virtual links as well as analytic modeling including response time. Despite of their research efforts, configuration problem for both MTU (Maximum Transmission Unit) and BAG (Bandwidth Allocation Gap) over virtual links in AFDX networks remains unsolved yet. In this paper, we propose how to set MTU and BAG value on each virtual link according to both application requirements and AFDX switch constraints. We define a new problem of feasible configurations of virtual links in an AFDX switch and propose an algorithm to derive feasible BAG and MTU pairs based on the branch-and-bound technique. Throughout simulations, we evaluate the proposed algorithm and analyze the effect of parameters in AFDX networks.This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. NRF- 2012R1A1A1015096) and BK21+ Program

    Ethernet-based AFDX simulation and time delay analysis

    Get PDF
    Nowadays, new civilian aircraft have applied new technology and the amount of embedded systems and functions raised. Traditional avionics data buses design can‘t meet the new transmission requirements regarding weight and complexity due to the number of needed buses. On the other hand, Avionics Full Duplex Switched Ethernet (AFDX) with sufficient bandwidth and guaranteed services is considered as the next generation of avionics data bus. One of the important issues in Avionics Full Duplex Switched Ethernet is to ensure the data total time delay to meet the requirements of the safety-critical systems on aircraft such as flight control system. This research aims at developing an AFDX time delay model which can be used to analyse the total time delay of the AFDX network. By applying network calculus approach, both (σ,ρ) model and Generic Cell Rate Algorithm (GCRA) model are introduced. For tighter time-delay result, GCRA model is applied. Meanwhile, the current AFDX network simulation platform, FACADE, will be enhanced by adding new functions. Moreover, avionics application simulation modules are developed to exchange data with FACADE. The total time delay analysis will be performed on the improved FACADE to validate this AFDX network simulation platform in several scenarios. Moreover, each scenario is appropriated to study the association between total time delay performance and individual variable. The results from updated FACADE reflect the correlation between total time delay and certain variables. Larger BAG and more switches between source and destination end systems introduce larger total time delay while Lmax could also affect the total time delay. However, the results illustrate that the total time delays from updated FACADE are much larger than GCRA time delay model which could up to 10 times which indicates that this updated FACADE needs further improvement

    Multi-core devices for safety-critical systems: a survey

    Get PDF
    Multi-core devices are envisioned to support the development of next-generation safety-critical systems, enabling the on-chip integration of functions of different criticality. This integration provides multiple system-level potential benefits such as cost, size, power, and weight reduction. However, safety certification becomes a challenge and several fundamental safety technical requirements must be addressed, such as temporal and spatial independence, reliability, and diagnostic coverage. This survey provides a categorization and overview at different device abstraction levels (nanoscale, component, and device) of selected key research contributions that support the compliance with these fundamental safety requirements.This work has been partially supported by the Spanish Ministry of Economy and Competitiveness under grant TIN2015-65316-P, Basque Government under grant KK-2019-00035 and the HiPEAC Network of Excellence. The Spanish Ministry of Economy and Competitiveness has also partially supported Jaume Abella under Ramon y Cajal postdoctoral fellowship (RYC-2013-14717).Peer ReviewedPostprint (author's final draft
    corecore