4,194 research outputs found

    The 1990 progress report and future plans

    Get PDF
    This document describes the progress and plans of the Artificial Intelligence Research Branch (RIA) at ARC in 1990. Activities span a range from basic scientific research to engineering development and to fielded NASA applications, particularly those applications that are enabled by basic research carried out at RIA. Work is conducted in-house and through collaborative partners in academia and industry. Our major focus is on a limited number of research themes with a dual commitment to technical excellence and proven applicability to NASA short, medium, and long-term problems. RIA acts as the Agency's lead organization for research aspects of artificial intelligence, working closely with a second research laboratory at JPL and AI applications groups at all NASA centers

    Vesyla-II: An Algorithm Library Development Tool for Synchoros VLSI Design Style

    Full text link
    High-level synthesis (HLS) has been researched for decades and is still limited to fast FPGA prototyping and algorithmic RTL generation. A feasible end-to-end system-level synthesis solution has never been rigorously proven. Modularity and composability are the keys to enabling such a system-level synthesis framework that bridges the huge gap between system-level specification and physical level design. It implies that 1) modules in each abstraction level should be physically composable without any irregular glue logic involved and 2) the cost of each module in each abstraction level is accurately predictable. The ultimate reasons that limit how far the conventional HLS can go are precisely that it cannot generate modular designs that are physically composable and cannot accurately predict the cost of its design. In this paper, we propose Vesyla, not as yet another HLS tool, but as a synthesis tool that positions itself in a promising end-to-end synthesis framework and preserving its ability to generate physically composable modular design and to accurately predict its cost metrics. We present in the paper how Vesyla is constructed focusing on the novel platform it targets and the internal data structures that highlights the uniqueness of Vesyla. We also show how Vesyla will be positioned in the end-to-end synchoros synthesis framework called SiLago

    Automatic Verification of Message-Based Device Drivers

    Full text link
    We develop a practical solution to the problem of automatic verification of the interface between device drivers and the OS. Our solution relies on a combination of improved driver architecture and verification tools. It supports drivers written in C and can be implemented in any existing OS, which sets it apart from previous proposals for verification-friendly drivers. Our Linux-based evaluation shows that this methodology amplifies the power of existing verification tools in detecting driver bugs, making it possible to verify properties beyond the reach of traditional techniques.Comment: In Proceedings SSV 2012, arXiv:1211.587

    Formal Verification of Security Protocol Implementations: A Survey

    Get PDF
    Automated formal verification of security protocols has been mostly focused on analyzing high-level abstract models which, however, are significantly different from real protocol implementations written in programming languages. Recently, some researchers have started investigating techniques that bring automated formal proofs closer to real implementations. This paper surveys these attempts, focusing on approaches that target the application code that implements protocol logic, rather than the libraries that implement cryptography. According to these approaches, libraries are assumed to correctly implement some models. The aim is to derive formal proofs that, under this assumption, give assurance about the application code that implements the protocol logic. The two main approaches of model extraction and code generation are presented, along with the main techniques adopted for each approac

    IST Austria Thesis

    Get PDF
    In this thesis we present a computer-aided programming approach to concurrency. Our approach helps the programmer by automatically fixing concurrency-related bugs, i.e. bugs that occur when the program is executed using an aggressive preemptive scheduler, but not when using a non-preemptive (cooperative) scheduler. Bugs are program behaviours that are incorrect w.r.t. a specification. We consider both user-provided explicit specifications in the form of assertion statements in the code as well as an implicit specification. The implicit specification is inferred from the non-preemptive behaviour. Let us consider sequences of calls that the program makes to an external interface. The implicit specification requires that any such sequence produced under a preemptive scheduler should be included in the set of sequences produced under a non-preemptive scheduler. We consider several semantics-preserving fixes that go beyond atomic sections typically explored in the synchronisation synthesis literature. Our synthesis is able to place locks, barriers and wait-signal statements and last, but not least reorder independent statements. The latter may be useful if a thread is released to early, e.g., before some initialisation is completed. We guarantee that our synthesis does not introduce deadlocks and that the synchronisation inserted is optimal w.r.t. a given objective function. We dub our solution trace-based synchronisation synthesis and it is loosely based on counterexample-guided inductive synthesis (CEGIS). The synthesis works by discovering a trace that is incorrect w.r.t. the specification and identifying ordering constraints crucial to trigger the specification violation. Synchronisation may be placed immediately (greedy approach) or delayed until all incorrect traces are found (non-greedy approach). For the non-greedy approach we construct a set of global constraints over synchronisation placements. Each model of the global constraints set corresponds to a correctness-ensuring synchronisation placement. The placement that is optimal w.r.t. the given objective function is chosen as the synchronisation solution. We evaluate our approach on a number of realistic (albeit simplified) Linux device-driver benchmarks. The benchmarks are versions of the drivers with known concurrency-related bugs. For the experiments with an explicit specification we added assertions that would detect the bugs in the experiments. Device drivers lend themselves to implicit specification, where the device and the operating system are the external interfaces. Our experiments demonstrate that our synthesis method is precise and efficient. We implemented objective functions for coarse-grained and fine-grained locking and observed that different synchronisation placements are produced for our experiments, favouring e.g. a minimal number of synchronisation operations or maximum concurrency

    Artificial Intelligence Research Branch future plans

    Get PDF
    This report contains information on the activities of the Artificial Intelligence Research Branch (FIA) at NASA Ames Research Center (ARC) in 1992, as well as planned work in 1993. These activities span a range from basic scientific research through engineering development to fielded NASA applications, particularly those applications that are enabled by basic research carried out in FIA. Work is conducted in-house and through collaborative partners in academia and industry. All of our work has research themes with a dual commitment to technical excellence and applicability to NASA short, medium, and long-term problems. FIA acts as the Agency's lead organization for research aspects of artificial intelligence, working closely with a second research laboratory at the Jet Propulsion Laboratory (JPL) and AI applications groups throughout all NASA centers. This report is organized along three major research themes: (1) Planning and Scheduling: deciding on a sequence of actions to achieve a set of complex goals and determining when to execute those actions and how to allocate resources to carry them out; (2) Machine Learning: techniques for forming theories about natural and man-made phenomena; and for improving the problem-solving performance of computational systems over time; and (3) Research on the acquisition, representation, and utilization of knowledge in support of diagnosis design of engineered systems and analysis of actual systems

    Abstract State Machines 1988-1998: Commented ASM Bibliography

    Get PDF
    An annotated bibliography of papers which deal with or use Abstract State Machines (ASMs), as of January 1998.Comment: Also maintained as a BibTeX file at http://www.eecs.umich.edu/gasm

    EPICURE: A partitioning and co-design framework for reconfigurable computing

    Get PDF
    This paper presents a new design methodology able to bridge the gap between an abstract specification and a heterogeneous reconfigurable architecture. The EPICURE contribution is the result of a joint study on abstraction/refinement methods and a smart reconfigurable architecture within the formal Esterel design tools suite. The original points of this work are: (i) a generic HW/SW interface model, (ii) a specification methodology that handles the control, and includes efficient verification and HW/SW synthesis capabilities, (iii) a method for parallelism exploration based on abstract resources/performance estimation expressed in terms of area/delay tradeoffs, (iv) a HW/SW partitioning approach that refines the specification into explicit HW configurations and the associated SW control. The EPICURE framework shows how a cooperation of complementary methodologies and CAD tools associated with a relevant architecture can signficantly improve the designer productivity, especially in the context of reconfigurable architectures
    corecore