88 research outputs found

    Experimental analysis and proof-of-concept of distributed mechanisms for local area wireless networks

    Get PDF

    Project Final Report – FREEDOM ICT-248891

    Get PDF
    This document is the final publishable summary report of the objective and work carried out within the European Project FREEDOM, ICT-248891.This document is the final publishable summary report of the objective and work carried out within the European Project FREEDOM, ICT-248891.Preprin

    Experimental Evaluation of Transmitted Signal Distortion Caused by Power Allocation in Inter-Cell Interference Coordination Techniques for LTE/LTE-A and 5G Systems

    Get PDF
    Error vector magnitude (EVM) and out-of-band emissions are key metrics for evaluating in-band and out-band distortions introduced by all potential non-idealities in the transmitters of wireless systems. As EVM is a measure of the quality of the modulated signal/symbols, LTE/LTE-A and 5G systems specify mandatory EVM requirements in transmission for each modulation scheme. This paper analyzes the influence of the mandatory satisfaction of EVM requirements on the design of radio resource management strategies (RRM) (link adaptation, inter-cell interference coordination), specifically in the downlink (DL). EVM depends on the non-idealities of the transmitter implementations, on the allocated power variations between the subcarriers and on the selected modulations. In the DL of LTE, link adaptation is usually executed by adaptive modulation and coding (AMC) instead of power control, but some flexibility in power allocation remains being used. LTE specifies some limits in the power dynamic ranges depending on the allocated modulation, which ensures the satisfaction of EVM requirements. However, the required recommendations concerning the allowed power dynamic range when inter-cell interference coordination (ICIC) and enhanced ICIC (eICIC) mechanisms (through power coordination) are out of specification, even though the EVM performance should be known to obtain the maximum benefit of these strategies. We perform an experimental characterization of the EVM in the DL under real and widely known ICIC implementation schemes. These studies demonstrate that an accurate analysis of EVM is required. It allows a better adjustment of the design parameters of these strategies, and also allows the redefinition of the main criteria to be considered in the implementation of the scheduler/link adaptation concerning the allocable modulation coding scheme (MCS) in each resource block. © 2013 IEEE

    Self-organisation in LTE networks : an investigation

    Get PDF
    Mobile telecommunications networks based on Long Term Evolution (LTE) technology promise faster throughput to their users. LTE networks are however susceptible to a phenomenon known as inter-cell interference which can greatly reduce the throughput of the network causing unacceptable degradation of performance for cell edge users. A number of approaches to mitigating or minimising inter-cell interference have been presented in the literature such as randomisation, cancellation and coordination. The possibility of coordination between network nodes in an LTE network is made possible through the introduction of the X2 network link. This thesis explores approaches to reducing the effect of inter-cell interference on the throughput of LTE networks by using the X2 link to coordinate the scheduling of radio resources. Three approaches to the reduction of inter-cell interference were developed. Localised organisation is a centralised scheme in which a scheduler is optimised by a Genetic Algorithm (GA) to reduce interference. Networked organisation makes use of the X2 communications link to enable the network nodes to exchange scheduling information in a way that lowers the level of interference across the whole network. Finally a more distributed and de-centralised approach is taken in which each of the network nodes optimises its own scheduling in coordination with its neighbours. An LTE network simulator was built to allow for experimental comparison between these techniques and a number of existing approaches and to serve as a test bed for future algorithm development. These approaches were found to significantly improve the throughput of the cell edge users who were most affected by intereference. In particular the networked aspect of these approaches yielded the best initial results showing clear improvement over the existing state of the art. The distributed approach shows significant promise given further development.EPSR

    Optimisation de la gestion des interférences inter-cellulaires et de l'attachement des mobiles dans les réseaux cellulaires LTE

    Get PDF
    Driven by an exponential growth in mobile broadband-enabled devices and a continue dincrease in individual data consumption, mobile data traffic has grown 4000-fold over the past 10 years and almost 400-million-fold over the past 15 years. Homogeneouscellular networks have been facing limitations to handle soaring mobile data traffic and to meet the growing end-user demand for more bandwidth and betterquality of experience. These limitations are mainly related to the available spectrumand the capacity of the network. Telecommunication industry has to address these challenges and meet exploding demand. At the same time, it has to guarantee a healthy economic model to reduce the carbon footprint which is caused by mobile communications.Heterogeneous Networks (HetNets), composed of macro base stations and low powerbase stations of different types, are seen as the key solution to improve spectral efficiency per unit area and to eliminate coverage holes. In such networks, intelligent user association and interference management schemes are needed to achieve gains in performance. Due to the large imbalance in transmission power between macroand small cells, user association based on strongest signal received is not adapted inHetNets as only few users would attach to low power nodes. A technique based onCell Individual Offset (CIO) is therefore required to perform load balancing and to favor some Small Cell (SC) attraction against Macro Cell (MC). This offset is addedto users’ Reference Signal Received Power (RSRP) measurements and hence inducing handover towards different eNodeBs. As Long Term Evolution (LTE) cellular networks use the same frequency sub-bands, mobile users may experience strong inter-cellxv interference, especially at cell edge. Therefore, there is a need to coordinate resource allocation among the cells and minimize inter-cell interference. To mitigate stronginter-cell interference, the resource, in time, frequency and power domain, should be allocated efficiently. A pattern for each dimension is computed to permit especially for cell edge users to benefit of higher throughput and quality of experience. The optimization of all these parameters can also offer gain in energy use. In this thesis,we propose a concrete versatile dynamic solution performing an optimization of user association and resource allocation in LTE cellular networks maximizing a certainnet work utility function that can be adequately chosen. Our solution, based on gametheory, permits to compute Cell Individual Offset and a pattern of power transmission over frequency and time domain for each cell. We present numerical simulations toillustrate the important performance gain brought by this optimization. We obtain significant benefits in the average throughput and also cell edge user through put of40% and 55% gains respectively. Furthermore, we also obtain a meaningful improvement in energy efficiency. This work addresses industrial research challenges and assuch, a prototype acting on emulated HetNets traffic has been implemented.Conduit par une croissance exponentielle dans les appareils mobiles et une augmentation continue de la consommation individuelle des données, le trafic de données mobiles a augmenté de 4000 fois au cours des 10 dernières années et près de 400millions fois au cours des 15 dernières années. Les réseaux cellulaires homogènes rencontrent de plus en plus de difficultés à gérer l’énorme trafic de données mobiles et à assurer un débit plus élevé et une meilleure qualité d’expérience pour les utilisateurs.Ces difficultés sont essentiellement liées au spectre disponible et à la capacité du réseau.L’industrie de télécommunication doit relever ces défis et en même temps doit garantir un modèle économique pour les opérateurs qui leur permettra de continuer à investir pour répondre à la demande croissante et réduire l’empreinte carbone due aux communications mobiles. Les réseaux cellulaires hétérogènes (HetNets), composés de stations de base macro et de différentes stations de base de faible puissance,sont considérés comme la solution clé pour améliorer l’efficacité spectrale par unité de surface et pour éliminer les trous de couverture. Dans de tels réseaux, il est primordial d’attacher intelligemment les utilisateurs aux stations de base et de bien gérer les interférences afin de gagner en performance. Comme la différence de puissance d’émission est importante entre les grandes et petites cellules, l’association habituelle des mobiles aux stations de bases en se basant sur le signal le plus fort, n’est plus adaptée dans les HetNets. Une technique basée sur des offsets individuelles par cellule Offset(CIO) est donc nécessaire afin d’équilibrer la charge entre les cellules et d’augmenter l’attraction des petites cellules (SC) par rapport aux cellules macro (MC). Cette offset est ajoutée à la valeur moyenne de la puissance reçue du signal de référence(RSRP) mesurée par le mobile et peut donc induire à un changement d’attachement vers différents eNodeB. Comme les stations de bases dans les réseaux cellulaires LTE utilisent les mêmes sous-bandes de fréquences, les mobiles peuvent connaître une forte interférence intercellulaire, en particulier en bordure de cellules. Par conséquent, il est primordial de coordonner l’allocation des ressources entre les cellules et de minimiser l’interférence entre les cellules. Pour atténuer la forte interférence intercellulaire, les ressources, en termes de temps, fréquence et puissance d’émission, devraient être alloués efficacement. Un modèle pour chaque dimension est calculé pour permettre en particulier aux utilisateurs en bordure de cellule de bénéficier d’un débit plus élevé et d’une meilleure qualité de l’expérience. L’optimisation de tous ces paramètres peut également offrir un gain en consommation d’énergie. Dans cette thèse, nous proposons une solution dynamique polyvalente effectuant une optimisation de l’attachement des mobiles aux stations de base et de l’allocation des ressources dans les réseaux cellulaires LTE maximisant une fonction d’utilité du réseau qui peut être choisie de manière adéquate.Notre solution, basée sur la théorie des jeux, permet de calculer les meilleures valeurs pour l’offset individuelle par cellule (CIO) et pour les niveaux de puissance à appliquer au niveau temporel et fréquentiel pour chaque cellule. Nous présentons des résultats des simulations effectuées pour illustrer le gain de performance important apporté par cette optimisation. Nous obtenons une significative hausse dans le débit moyen et le débit des utilisateurs en bordure de cellule avec 40 % et 55 % de gains respectivement. En outre, on obtient un gain important en énergie. Ce travail aborde des défis pour l’industrie des télécoms et en tant que tel, un prototype de l’optimiseur a été implémenté en se basant sur un trafic HetNets émulé

    4G/5G cellular networks metrology and management

    Get PDF
    La prolifération d'applications et de services sophistiqués s'accompagne de diverses exigences de performances, ainsi que d'une croissance exponentielle du trafic pour le lien montant (uplink) et descendant (downlink). Les réseaux cellulaires tels que 4G et 5G évoluent pour prendre en charge cette quantité diversifiée et énorme de données. Le travail de cette thèse vise le renforcement de techniques avancées de gestion et supervision des réseaux cellulaires prenant l'explosion du trafic et sa diversité comme deux des principaux défis dans ces réseaux. La première contribution aborde l'intégration de l'intelligence dans les réseaux cellulaires via l'estimation du débit instantané sur le lien montant pour de petites granularités temporelles. Un banc d'essai 4G temps réel est déployé dans ce but de fournir un benchmark exhaustif des métriques de l'eNB. Des estimations précises sont ainsi obtenues. La deuxième contribution renforce le découpage 5G en temps réel au niveau des ressources radio dans un système multicellulaire. Pour cela, deux modèles d'optimisation ont été proposés. Du fait de leurs temps d'exécution trop long, des heuristiques ont été développées et évaluées en comparaisons des modèles optimaux. Les résultats sont prometteurs, les deux heuristiques renforçant fortement le découpage du RAN en temps réel.The proliferation of sophisticated applications and services comes with diverse performance requirements as well as an exponential traffic growth for both upload and download. The cellular networks such as 4G and 5G are advocated to support this diverse and huge amount of data. This thesis work targets the enforcement of advanced cellular network supervision and management techniques taking the traffic explosion and diversity as two main challenges in these networks. The first contribution tackles the intelligence integration in cellular networks through the estimation of users uplink instantaneous throughput at small time granularities. A real time 4G testbed is deployed for such aim with an exhaustive metrics benchmark. Accurate estimations are achieved.The second contribution enforces the real time 5G slicing from radio resources perspective in a multi-cell system. For that, two exact optimization models are proposed. Due to their high convergence time, heuristics are developed and evaluated with the optimal models. Results are promising, as two heuristics are highly enforcing the real time RAN slicing
    • …
    corecore