290 research outputs found

    Evaluation of unidirectional background push content download services for the delivery of television programs

    Full text link
    Este trabajo de tesis presenta los servicios de descarga de contenido en modo push como un mecanismo eficiente para el envío de contenido de televisión pre-producido sobre redes de difusión. Hoy en día, los operadores de red dedican una cantidad considerable de recursos de red a la entrega en vivo de contenido televisivo, tanto sobre redes de difusión como sobre conexiones unidireccionales. Esta oferta de servicios responde únicamente a requisitos comerciales: disponer de los contenidos televisivos en cualquier momento y lugar. Sin embargo, desde un punto de vista estrictamente académico, el envío en vivo es únicamente un requerimiento para el contenido en vivo, no para contenidos que ya han sido producidos con anterioridad a su emisión. Más aún, la difusión es solo eficiente cuando el contenido es suficientemente popular. Los servicios bajo estudio en esta tesis utilizan capacidad residual en redes de difusión para enviar contenido pre-producido para que se almacene en los equipos de usuario. La propuesta se justifica únicamente por su eficiencia. Por un lado, genera valor de recursos de red que no se aprovecharían de otra manera. Por otro lado, realiza la entrega de contenidos pre-producidos y populares de la manera más eficiente: sobre servicios de descarga de contenidos en difusión. Los resultados incluyen modelos para la popularidad y la duración de contenidos, valiosos para cualquier trabajo de investigación basados en la entrega de contenidos televisivos. Además, la tesis evalúa la capacidad residual disponible en redes de difusión, por medio de estudios empíricos. Después, estos resultados son utilizados en simulaciones que evalúan las prestaciones de los servicios propuestos en escenarios diferentes y para aplicaciones diferentes. La evaluación demuestra que este tipo de servicios son un recurso muy útil para la entrega de contenido televisivo.This thesis dissertation presents background push Content Download Services as an efficient mechanism to deliver pre-produced television content through existing broadcast networks. Nowadays, network operators dedicate a considerable amount of network resources to live streaming live, through both broadcast and unicast connections. This service offering responds solely to commercial requirements: Content must be available anytime and anywhere. However, from a strictly academic point of view, live streaming is only a requirement for live content and not for pre-produced content. Moreover, broadcasting is only efficient when the content is sufficiently popular. The services under study in this thesis use residual capacity in broadcast networks to push popular, pre-produced content to storage capacity in customer premises equipment. The proposal responds only to efficiency requirements. On one hand, it creates value from network resources otherwise unused. On the other hand, it delivers popular pre-produced content in the most efficient way: through broadcast download services. The results include models for the popularity and the duration of television content, valuable for any research work dealing with file-based delivery of television content. Later, the thesis evaluates the residual capacity available in broadcast networks through empirical studies. These results are used in simulations to evaluate the performance of background push content download services in different scenarios and for different applications. The evaluation proves that this kind of services can become a great asset for the delivery of television contentFraile Gil, F. (2013). Evaluation of unidirectional background push content download services for the delivery of television programs [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/31656TESI

    Exploiting Device-to-Device Communications to Enhance Spatial Reuse for Popular Content Downloading in Directional mmWave Small Cells

    Full text link
    With the explosive growth of mobile demand, small cells in millimeter wave (mmWave) bands underlying the macrocell networks have attracted intense interest from both academia and industry. MmWave communications in the 60 GHz band are able to utilize the huge unlicensed bandwidth to provide multiple Gbps transmission rates. In this case, device-to-device (D2D) communications in mmWave bands should be fully exploited due to no interference with the macrocell networks and higher achievable transmission rates. In addition, due to less interference by directional transmission, multiple links including D2D links can be scheduled for concurrent transmissions (spatial reuse). With the popularity of content-based mobile applications, popular content downloading in the small cells needs to be optimized to improve network performance and enhance user experience. In this paper, we develop an efficient scheduling scheme for popular content downloading in mmWave small cells, termed PCDS (popular content downloading scheduling), where both D2D communications in close proximity and concurrent transmissions are exploited to improve transmission efficiency. In PCDS, a transmission path selection algorithm is designed to establish multi-hop transmission paths for users, aiming at better utilization of D2D communications and concurrent transmissions. After transmission path selection, a concurrent transmission scheduling algorithm is designed to maximize the spatial reuse gain. Through extensive simulations under various traffic patterns, we demonstrate PCDS achieves near-optimal performance in terms of delay and throughput, and also superior performance compared with other existing protocols, especially under heavy load.Comment: 12 pages, to appear in IEEE Transactions on Vehicular Technolog

    Models and Methods for Network Selection and Balancing in Heterogeneous Scenarios

    Get PDF
    The outbreak of 5G technologies for wireless communications can be considered a response to the need for widespread coverage, in terms of connectivity and bandwidth, to guarantee broadband services, such as streaming or on-demand programs offered by the main television networks or new generation services based on augmented and virtual reality (AR / VR). The purpose of the study conducted for this thesis aims to solve two of the main problems that will occur with the outbreak of 5G, that is, the search for the best possible connectivity, in order to offer users the resources necessary to take advantage of the new generation services, and multicast as required by the eMBMS. The aim of the thesis is the search for innovative algorithms that will allow to obtain the best connectivity to offer users the resources necessary to use the 5G services in a heterogeneous scenario. Study UF that allows you to improve the search for the best candidate network and to achieve a balance that allows you to avoid congestion of the chosen networks. To achieve these two important focuses, I conducted a study on the main mathematical methods that made it possible to select the network based on QoS parameters based on the type of traffic made by users. A further goal was to improve the computational computation performance they present. Furthermore, I carried out a study in order to obtain an innovative algorithm that would allow the management of multicast. The algorithm that has been implemented responds to the needs present in the eMBMS, in realistic scenarios

    Device-to-Device Communication and Multihop Transmission for Future Cellular Networks

    Get PDF
    The next generation wireless networks i.e. 5G aim to provide multi-Gbps data traffic, in order to satisfy the increasing demand for high-definition video, among other high data rate services, as well as the exponential growth in mobile subscribers. To achieve this dramatic increase in data rates, current research is focused on improving the capacity of current 4G network standards, based on Long Term Evolution (LTE), before radical changes are exploited which could include acquiring additional/new spectrum. The LTE network has a reuse factor of one; hence neighbouring cells/sectors use the same spectrum, therefore making the cell edge users vulnerable to inter-cell interference. In addition, wireless transmission is commonly hindered by fading and pathloss. In this direction, this thesis focuses on improving the performance of cell edge users in LTE and LTE-Advanced (LTE-A) networks by initially implementing a new Coordinated Multi-Point (CoMP) algorithm to mitigate cell edge user interference. Subsequently Device-to-Device (D2D) communication is investigated as the enabling technology for maximising Resource Block (RB) utilisation in current 4G and emerging 5G networks. It is demonstrated that the application, as an extension to the above, of novel power control algorithms, to reduce the required D2D TX power, and multihop transmission for relaying D2D traffic, can further enhance network performance. To be able to develop the aforementioned technologies and evaluate the performance of new algorithms in emerging network scenarios, a beyond-the-state-of-the-art LTE system-level simulator (SLS) was implemented. The new simulator includes Multiple-Input Multiple-Output (MIMO) antenna functionalities, comprehensive channel models (such as Wireless World initiative New Radio II i.e. WINNER II) and adaptive modulation and coding schemes to accurately emulate the LTE and LTE-A network standards. Additionally, a novel interference modelling scheme using the ‘wrap around’ technique was proposed and implemented that maintained the topology of flat surfaced maps, allowing for use with cell planning tools while obtaining accurate and timely results in the SLS compared to the few existing platforms. For the proposed CoMP algorithm, the adaptive beamforming technique was employed to reduce interference on the cell edge UEs by applying Coordinated Scheduling (CoSH) between cooperating cells. Simulation results show up to 2-fold improvement in terms of throughput, and also shows SINR gain for the cell edge UEs in the cooperating cells. Furthermore, D2D communication underlaying the LTE network (and future generation of wireless networks) was investigated. The technology exploits the proximity of users in a network to achieve higher data rates with maximum RB utilisation (as the technology reuses the cellular RB simultaneously), while taking some load off the Evolved Node B (eNB) i.e. by direct communication between User Equipment (UE). Simulation results show that the proximity and transmission power of D2D transmission yields high performance gains for a D2D receiver, which was demonstrated to be better than that of cellular UEs with better channel conditions or in close proximity to the eNB in the network. The impact of interference from the simultaneous transmission however impedes the achievable data rates of cellular UEs in the network, especially at the cell edge. Thus, a power control algorithm was proposed to mitigate the impact of interference in the hybrid network (network consisting of both cellular and D2D UEs). It was implemented by setting a minimum SINR threshold so that the cellular UEs achieve a minimum performance, and equally a maximum SINR threshold to establish fairness for the D2D transmission as well. Simulation results show an increase in the cell edge throughput and notable improvement in the overall SINR distribution of UEs in the hybrid network. Additionally, multihop transmission for D2D UEs was investigated in the hybrid network: traditionally, the scheme is implemented to relay cellular traffic in a homogenous network. Contrary to most current studies where D2D UEs are employed to relay cellular traffic, the use of idle nodes to relay D2D traffic was implemented uniquely in this thesis. Simulation results show improvement in D2D receiver throughput with multihop transmission, which was significantly better than that of the same UEs performance with equivalent distance between the D2D pair when using single hop transmission

    Comnet: Annual Report 2012

    Get PDF
    • …
    corecore