8,053 research outputs found

    Pervasive Data Access in Wireless and Mobile Computing Environments

    Get PDF
    The rapid advance of wireless and portable computing technology has brought a lot of research interests and momentum to the area of mobile computing. One of the research focus is on pervasive data access. with wireless connections, users can access information at any place at any time. However, various constraints such as limited client capability, limited bandwidth, weak connectivity, and client mobility impose many challenging technical issues. In the past years, tremendous research efforts have been put forth to address the issues related to pervasive data access. A number of interesting research results were reported in the literature. This survey paper reviews important works in two important dimensions of pervasive data access: data broadcast and client caching. In addition, data access techniques aiming at various application requirements (such as time, location, semantics and reliability) are covered

    A genetic algorithm based task scheduling system for logistics service robots

    Get PDF
    The demand for autonomous logistics service robots requires an efficient task scheduling system in order to optimise cost and time for the robot to complete its tasks. This paper presents a Genetic algorithm (GA) based task scheduling system for a ground mobile robot that is able to find a global near-optimal travelling path to complete a logistics task of pick-and-deliver items at various locations. In this study, the chromosome representation and the fitness function of GA is carefully designed to cater for a single load logistics robotic task. Two variants of GA crossover are adopted to enhance the performance of the proposed algorithm. The performance of the scheduling is compared and analysed between the proposed GA algorithms and a conventional greedy algorithm in a virtual map and a real map environments that turns out the proposed GA algorithms outperform the greedy algorithm by 40% to 80% improvement

    The crowd as a cameraman : on-stage display of crowdsourced mobile video at large-scale events

    Get PDF
    Recording videos with smartphones at large-scale events such as concerts and festivals is very common nowadays. These videos register the atmosphere of the event as it is experienced by the crowd and offer a perspective that is hard to capture by the professional cameras installed throughout the venue. In this article, we present a framework to collect videos from smartphones in the public and blend these into a mosaic that can be readily mixed with professional camera footage and shown on displays during the event. The video upload is prioritized by matching requests of the event director with video metadata, while taking into account the available wireless network capacity. The proposed framework's main novelty is its scalability, supporting the real-time transmission, processing and display of videos recorded by hundreds of simultaneous users in ultra-dense Wi-Fi environments, as well as its proven integration in commercial production environments. The framework has been extensively validated in a controlled lab setting with up to 1 000 clients as well as in a field trial where 1 183 videos were collected from 135 participants recruited from an audience of 8 050 people. 90 % of those videos were uploaded within 6.8 minutes

    Resilient network dimensioning for optical grid/clouds using relocation

    Get PDF
    In this paper we address the problem of dimensioning infrastructure, comprising both network and server resources, for large-scale decentralized distributed systems such as grids or clouds. We will provide an overview of our work in this area, and in particular focus on how to design the resulting grid/cloud to be resilient against network link and/or server site failures. To this end, we will exploit relocation: under failure conditions, a request may be sent to an alternate destination than the one under failure-free conditions. We will provide a comprehensive overview of related work in this area, and focus in some detail on our own most recent work. The latter comprises a case study where traffic has a known origin, but we assume a degree of freedom as to where its end up being processed, which is typically the case for e. g., grid applications of the bag-of-tasks (BoT) type or for providing cloud services. In particular, we will provide in this paper a new integer linear programming (ILP) formulation to solve the resilient grid/cloud dimensioning problem using failure-dependent backup routes. Our algorithm will simultaneously decide on server and network capacity. We find that in the anycast routing problem we address, the benefit of using failure-dependent (FD) rerouting is limited compared to failure-independent (FID) backup routing. We confirm our earlier findings in terms of network capacity savings achieved by relocation compared to not exploiting relocation (order of 6-10% in the current case studies)

    Efficient Approximation Algorithms for Multi-Antennae Largest Weight Data Retrieval

    Full text link
    In a mobile network, wireless data broadcast over mm channels (frequencies) is a powerful means for distributed dissemination of data to clients who access the channels through multi-antennae equipped on their mobile devices. The δ\delta-antennae largest weight data retrieval (δ\deltaALWDR) problem is to compute a schedule for downloading a subset of data items that has a maximum total weight using δ\delta antennae in a given time interval. In this paper, we propose a ratio 1−1e−ϵ1-\frac{1}{e}-\epsilon approximation algorithm for the δ\delta-antennae largest weight data retrieval (δ\deltaALWDR) problem that has the same ratio as the known result but a significantly improved time complexity of O(21ϵ1ϵm7T3.5L)O(2^{\frac{1}{\epsilon}}\frac{1}{\epsilon}m^{7}T^{3.5}L) from O(ϵ3.5m3.5ϵT3.5L)O(\epsilon^{3.5}m^{\frac{3.5}{\epsilon}}T^{3.5}L) when δ=1\delta=1 \cite{lu2014data}. To our knowledge, our algorithm represents the first ratio 1−1e−ϵ1-\frac{1}{e}-\epsilon approximation solution to δ\deltaALWDR for the general case of arbitrary δ\delta. To achieve this, we first give a ratio 1−1e1-\frac{1}{e} algorithm for the γ\gamma-separated δ\deltaALWDR (δ\deltaAγ\gammaLWDR) with runtime O(m7T3.5L)O(m^{7}T^{3.5}L), under the assumption that every data item appears at most once in each segment of δ\deltaAγ\gammaLWDR, for any input of maximum length LL on mm channels in TT time slots. Then, we show that we can retain the same ratio for δ\deltaAγ\gammaLWDR without this assumption at the cost of increased time complexity to O(2γm7T3.5L)O(2^{\gamma}m^{7}T^{3.5}L). This result immediately yields an approximation solution of same ratio and time complexity for δ\deltaALWDR, presenting a significant improvement of the known time complexity of ratio 1−1e−ϵ1-\frac{1}{e}-\epsilon approximation to the problem
    • …
    corecore