15,145 research outputs found

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Development of an Active Vision System for the Remote Identification of Multiple Targets

    Get PDF
    This thesis introduces a centralized active vision system for the remote identification of multiple targets in applications where the targets may outnumber the active system resources. Design and implementation details of a modular active vision system are presented, from which a prototype has been constructed. The system employs two different, yet complimentary, camera technologies. Omnidirectional cameras are used to detect and track targets at a low resolution, while perspective cameras mounted to pan-tilt stages are used to acquire high resolution images suitable for identification. Five greedy-based scheduling policies have been developed and implemented to manage the active system resources in an attempt to achieve optimal target-to-camera assignments. System performance has been evaluated using both simulated and real-world experiments under different target and system configurations for all five scheduling policies. Parameters affecting performance that were considered include: target entry conditions, congestion levels, target to camera speeds, target trajectories, and number of active cameras. An overall trend in the relative performance of the scheduling algorithms was observed. The Least System Reconfiguration and Future Least System Reconfiguration scheduling policies performed the best for the majority of conditions investigated, while the Load Sharing and First Come First Serve policies performed the poorest. The performance of the Earliest Deadline First policy was seen to be highly dependent on target predictability

    Development of an Active Vision System for the Remote Identification of Multiple Targets

    Get PDF
    This thesis introduces a centralized active vision system for the remote identification of multiple targets in applications where the targets may outnumber the active system resources. Design and implementation details of a modular active vision system are presented, from which a prototype has been constructed. The system employs two different, yet complimentary, camera technologies. Omnidirectional cameras are used to detect and track targets at a low resolution, while perspective cameras mounted to pan-tilt stages are used to acquire high resolution images suitable for identification. Five greedy-based scheduling policies have been developed and implemented to manage the active system resources in an attempt to achieve optimal target-to-camera assignments. System performance has been evaluated using both simulated and real-world experiments under different target and system configurations for all five scheduling policies. Parameters affecting performance that were considered include: target entry conditions, congestion levels, target to camera speeds, target trajectories, and number of active cameras. An overall trend in the relative performance of the scheduling algorithms was observed. The Least System Reconfiguration and Future Least System Reconfiguration scheduling policies performed the best for the majority of conditions investigated, while the Load Sharing and First Come First Serve policies performed the poorest. The performance of the Earliest Deadline First policy was seen to be highly dependent on target predictability

    The Zwicky Transient Facility: Surveys and Scheduler

    Get PDF
    We present a novel algorithm for scheduling the observations of time-domain imaging surveys. Our Integer Linear Programming approach optimizes an observing plan for an entire night by assigning targets to temporal blocks, enabling strict control of the number of exposures obtained per field and minimizing filter changes. A subsequent optimization step minimizes slew times between each observation. Our optimization metric self-consistently weights contributions from time-varying airmass, seeing, and sky brightness to maximize the transient discovery rate. We describe the implementation of this algorithm on the surveys of the Zwicky Transient Facility and present its on-sky performance.Comment: Published in PASP Focus Issue on the Zwicky Transient Facility (https://dx.doi.org/10.1088/1538-3873/ab0c2a). 13 Pages, 11 Figure
    corecore