352 research outputs found

    Effect of oil palm empty fruit bunches (OPEFB) fibers to the compressive strength and water absorption of concrete

    Get PDF
    Growing popularity based on environmentally-friendly, low cost and lightweight building materials in the construction industry has led to a need to examine how these characteristics can be achieved and at the same time giving the benefit to the environment and maintain the material requirements based on the standards required. Recycling of waste generated from industrial and agricultural activities as measures of building materials is not only a viable solution to the problem of pollution but also to produce an economic design of building

    Exploring Energy Consumption Issues for video Streaming in Mobile Devices: a Review

    Full text link
    The proliferation of high-end mobile devices, such as smart phones, tablets, together have gained the popularity of multimedia streaming among the user. It is found from various studies and survey that at end of 2020 mobile devices will increase drastically and Mobile video streaming will also grow rapidly than overall average mobile traffic. The streaming application in Smartphone heavily depends on the wireless network activities substantially amount of data transfer server to the client. Because of very high energy requirement of data transmitted in wireless interface for video streaming application considered as most energy consuming application. Therefore to optimize the battery USAge of mobile device during video streaming it is essential to understand the various video streaming techniques and there energy consumption issues in different environment. In this paper we explore energy consumption in mobile device while experiencing video streaming and examine the solution that has been discussed in various research to improve the energy consumption during video streaming in mobile devices . We classify the investigation on a different layer of internet protocol stack they utilize and also compare them and provide proof of fact that already exist in modern Smartphone as energy saving mechanism

    Quality of experience-centric management of adaptive video streaming services : status and challenges

    Get PDF
    Video streaming applications currently dominate Internet traffic. Particularly, HTTP Adaptive Streaming ( HAS) has emerged as the dominant standard for streaming videos over the best-effort Internet, thanks to its capability of matching the video quality to the available network resources. In HAS, the video client is equipped with a heuristic that dynamically decides the most suitable quality to stream the content, based on information such as the perceived network bandwidth or the video player buffer status. The goal of this heuristic is to optimize the quality as perceived by the user, the so-called Quality of Experience (QoE). Despite the many advantages brought by the adaptive streaming principle, optimizing users' QoE is far from trivial. Current heuristics are still suboptimal when sudden bandwidth drops occur, especially in wireless environments, thus leading to freezes in the video playout, the main factor influencing users' QoE. This issue is aggravated in case of live events, where the player buffer has to be kept as small as possible in order to reduce the playout delay between the user and the live signal. In light of the above, in recent years, several works have been proposed with the aim of extending the classical purely client-based structure of adaptive video streaming, in order to fully optimize users' QoE. In this article, a survey is presented of research works on this topic together with a classification based on where the optimization takes place. This classification goes beyond client-based heuristics to investigate the usage of server-and network-assisted architectures and of new application and transport layer protocols. In addition, we outline the major challenges currently arising in the field of multimedia delivery, which are going to be of extreme relevance in future years

    Seamless multimedia delivery within a heterogeneous wireless networks environment: are we there yet?

    Get PDF
    The increasing popularity of live video streaming from mobile devices such as Facebook Live, Instagram Stories, Snapchat, etc. pressurises the network operators to increase the capacity of their networks. However, a simple increase in system capacity will not be enough without considering the provisioning of Quality of Experience (QoE) as the basis for network control, customer loyalty and retention rate and thus increase in network operators revenue. As QoE is gaining strong momentum especially with increasing users’ quality expectations, the focus is now on proposing innovative solutions to enable QoE when delivering video content over heterogeneous wireless networks. In this context, this paper presents an overview of multimedia delivery solutions, identifies the problems and provides a comprehensive classification of related state-of-the-art approaches following three key directions: adaptation, energy efficiency and multipath content delivery. Discussions, challenges and open issues on the seamless multimedia provisioning faced by the current and next generation of wireless networks are also provided

    Seamless Multimedia Delivery Within a Heterogeneous Wireless Networks Environment: Are We There Yet?

    Get PDF
    The increasing popularity of live video streaming from mobile devices, such as Facebook Live, Instagram Stories, Snapchat, etc. pressurizes the network operators to increase the capacity of their networks. However, a simple increase in system capacity will not be enough without considering the provisioning of quality of experience (QoE) as the basis for network control, customer loyalty, and retention rate and thus increase in network operators revenue. As QoE is gaining strong momentum especially with increasing users' quality expectations, the focus is now on proposing innovative solutions to enable QoE when delivering video content over heterogeneous wireless networks. In this context, this paper presents an overview of multimedia delivery solutions, identifies the problems and provides a comprehensive classification of related state-of-the-art approaches following three key directions: 1) adaptation; 2) energy efficiency; and 3) multipath content delivery. Discussions, challenges, and open issues on the seamless multimedia provisioning faced by the current and next generation of wireless networks are also provided

    Transparent resource sharing framework for internet services on handheld devices

    Get PDF
    Handheld devices have limited processing power and a short battery lifetime. As a result, computationally intensive applications cannot run appropriately or cause the device to run out of battery too early. Additionally, Internet-based service providers targeting these mobile devices lack information to estimate the remaining battery autonomy and have no view on the availability of idle resources in the neighborhood of the handheld device. These battery-related issues create an opportunity for Internet providers to broaden their role and start managing energy aspects of battery-driven mobile devices inside the home. In this paper, we propose an energy-aware resource-sharing framework that enables Internet access providers to delegate (a part of) a client application from a handheld device to idle resources in the LAN, in a transparent way for the end-user. The key component is the resource sharing service, hosted on the LAN gateway, which can be remotely queried and managed by the Internet access provider. The service includes a battery model to predict the remaining battery lifetime. We describe the concept of resource-sharing-as-a-service that allows users of handheld devices to subscribe to the resource sharing service. In a proof-of-concept, we evaluate the delay to offload a client application to an idle computer and study the impact on battery autonomy as a function of the CPU cycles that can be offloaded
    corecore