60 research outputs found

    Activity Report 2022

    Get PDF

    ALEC: Active learning with ensemble of classifiers for clinical diagnosis of coronary artery disease

    Get PDF
    Invasive angiography is the reference standard for coronary artery disease (CAD) diagnosis but is expensive and associated with certain risks. Machine learning (ML) using clinical and noninvasive imaging parameters can be used for CAD diagnosis to avoid the side effects and cost of angiography. However, ML methods require labeled samples for efficient training. The labeled data scarcity and high labeling costs can be mitigated by active learning. This is achieved through selective query of challenging samples for labeling. To the best of our knowledge, active learning has not been used for CAD diagnosis yet. An Active Learning with Ensemble of Classifiers (ALEC) method is proposed for CAD diagnosis, consisting of four classifiers. Three of these classifiers determine whether a patientā€™s three main coronary arteries are stenotic or not. The fourth classifier predicts whether the patient has CAD or not. ALEC is first trained using labeled samples. For each unlabeled sample, if the outputs of the classifiers are consistent, the sample along with its predicted label is added to the pool of labeled samples. Inconsistent samples are manually labeled by medical experts before being added to the pool. The training is performed once more using the samples labeled so far. The interleaved phases of labeling and training are repeated until all samples are labeled. Compared with 19 other active learning algorithms, ALEC combined with a support vector machine classifier attained superior performance with 97.01% accuracy. Our method is justified mathematically as well. We also comprehensively analyze the CAD dataset used in this paper. As part of dataset analysis, features pairwise correlation is computed. The top 15 features contributing to CAD and stenosis of the three main coronary arteries are determined. The relationship between stenosis of the main arteries is presented using conditional probabilities. The effect of considering the number of stenotic arteries on sample discrimination is investigated. The discrimination power over dataset samples is visualized, assuming each of the three main coronary arteries as a sample label and considering the two remaining arteries as sample features

    Dagstuhl News January - December 2007

    Get PDF
    "Dagstuhl News" is a publication edited especially for the members of the Foundation "Informatikzentrum Schloss Dagstuhl" to thank them for their support. The News give a summary of the scientific work being done in Dagstuhl. Each Dagstuhl Seminar is presented by a small abstract describing the contents and scientific highlights of the seminar as well as the perspectives or challenges of the research topic

    Throughput and Yield Improvement for a Continuous Discrete-Product Manufacturing System

    Get PDF
    A seam-welded steel pipe manufacturing process has mainly four distinct major design and/or operational problems dealing with buffer inventory, cutting tools, pipe sizing and inspection-rework facility. The general objective of this research is to optimally solve these four important problems to improve the throughput and yield of the system at a minimum cost. The first problem of this research finds the optimal buffer capacity of steel strip coils to minimize the maintenance and downtime related costs. The total cost function for this coil feeding system is formulated as a constrained non-linear programming (NLP) problem which is solved with a search algorithm. The second problem aims at finding the optimal tool magazine reload timing, magazine size and the order quantity for the cutting tools. This tool magazine system is formulated as a mixed-integer NLP problem which is solved for minimizing the total cost. The third problem deals with different type of manufacturing defects. The profit function of this problem forms a binary integer NLP problem which involves multiple integrals with several exponential and discrete functions. An exhaustive search method is employed to find the optimum strategy for dealing with the defects and pipe sizing. The fourth problem pertains to the number of servers and floor space allocations for the off-line inspection-rework facility. The total cost function forms an integer NLP structure, which is minimized with a customized search algorithm. In order to judge the impact of the above-mentioned problems, an overall equipment effectiveness (OEE) measure, coined as monetary loss based regression (MLBR) method, is also developed as the fifth problem to assess the performance of the entire manufacturing system. Finally, a numerical simulation of the entire process is conducted to illustrate the applications of the optimum parameters setting and to evaluate the overall effectiveness of the simulated system. The successful improvement of the simulated system supports this research to be implemented in a real manufacturing setup. Different pathways shown here for improving the throughput and yield of industrial systems reflect not only to the improvement of methodologies and techniques but also to the advancement of new technology and national economy

    Vehicle dispatch in high-capacity shared autonomous mobility-on-demand systems

    Get PDF
    Ride-sharing is a promising solution for transportation issues such as traffic congestion and parking land use, which are brought about by the extensive usage of private vehicles. In the near future, large-scale Shared Autonomous Mobility-on-Demand (SAMoD) systems are expected to be deployed with the realization of self-driving vehicles. It has the potential to encourage a car-free lifestyle and create a new urban mobility mode where ride-sharing is widely adopted among people. This thesis addresses the problem of improving the efficiency and quality of vehicle dispatch in high-capacity SAMoD systems. The first part of the thesis develops a dispatcher which can efficiently explore the complete candidate match space and produce the optimal assignment policy when only deterministic information is concerned. It uses an incremental search method that can quickly prune out infeasible candidates to reduce the search space. It also has an iterative re-optimization strategy to dynamically alter the assignment policy to take into account both previous and newly revealed requests. Case studies of New York City using real-world data shows that it outperforms the state-of-the-art in terms of service rate and system scalability. The dispatcher developed in this part can serve as a foundation for the next two parts, which consider two kinds of uncertain information, stochastic travel times and the dynamic distribution of requests in the long-term future, respectively. The second part of the thesis describes a framework which makes use of stochastic travel time models to optimize the reliability of vehicle dispatch. It employs a candidate match search method to generate a candidate pool, uses a set of preprocessed shortest path tables to score the candidates and provides an assignment policy that maximizes the overall score. Two different dispatch objectives are discussed: the on-time arrival probabilities of requests and the proļ¬t of the platform. Experimental studies show that higher service rates, reliability and profits can be achieved by considering travel time uncertainty. The third part of the thesis presents a deep reinforcement learning based approach to optimize assignment polices in a more far-sighted way. It models the vehicle dispatch problem as a Markov Decision Process (MDP) and uses a policy evaluation method to learn a value function from the historic movements of drivers. The learned value function is employed to score candidate matches to guide a dispatcher optimizing long-term objective, and will be continually updated online to capture the real-time dynamics of the system. It is shown by experiments that the value function helps the dispatcher to yield higher service rates

    Proceedings of the 9th MIT/ONR workshop on C3 Systems, held at Naval Postgraduate School and Hilton Inn Resort Hotel, Monterey, California June 2 through June 5, 1986

    Get PDF
    GRSN 627729"December 1986."Includes bibliographical references and index.Sponsored by Massachusetts Institute of Technology, Laboratory for Information and Decision Systems, Cambridge, Mass., with support from the Office of Naval Research. ONR/N00014-77-C-0532(NR041-519) Sponsored in cooperation with IEEE Control Systems Society, Technical Committee on C.edited by Michael Athans, Alexander H. Levis
    • ā€¦
    corecore