4,717 research outputs found

    Time-Shared Execution of Realtime Computer Vision Pipelines by Dynamic Partial Reconfiguration

    Full text link
    This paper presents an FPGA runtime framework that demonstrates the feasibility of using dynamic partial reconfiguration (DPR) for time-sharing an FPGA by multiple realtime computer vision pipelines. The presented time-sharing runtime framework manages an FPGA fabric that can be round-robin time-shared by different pipelines at the time scale of individual frames. In this new use-case, the challenge is to achieve useful performance despite high reconfiguration time. The paper describes the basic runtime support as well as four optimizations necessary to achieve realtime performance given the limitations of DPR on today's FPGAs. The paper provides a characterization of a working runtime framework prototype on a Xilinx ZC706 development board. The paper also reports the performance of realtime computer vision pipelines when time-shared

    Self-Timed Periodic Scheduling For Cyclo-Static DataFlow Model

    Get PDF
    International audienceReal-time and time-constrained applications programmed on many-core systems can suffer from unmet timing constraints even with correct-by-construction schedules. Such unexpected results are usually caused by unaccounted for delays due to resource sharing (e.g. the communication medium). In this paper we address the three main sources of unpredictable behaviors: First, we propose to use a deterministic Model of Computation (MoC), more specifically, the well-formed CSDF subset of process networks; Second, we propose a run-time management strategy of shared resources to avoid unpredictable timings; Third, we promote the use of a new scheduling policy, the so-said Self-Timed Periodic (STP) scheduling, to improve performance and decrease synchronization costs by taking into account resource sharing or resource constraints. This is a quantitative improvement above state-of-the-art scheduling policies which assumed fixed delays of inter-processor communication and did not take correctly into account subtle effects of synchronization

    C-MOS array design techniques: SUMC multiprocessor system study

    Get PDF
    The current capabilities of LSI techniques for speed and reliability, plus the possibilities of assembling large configurations of LSI logic and storage elements, have demanded the study of multiprocessors and multiprocessing techniques, problems, and potentialities. Evaluated are three previous systems studies for a space ultrareliable modular computer multiprocessing system, and a new multiprocessing system is proposed that is flexibly configured with up to four central processors, four 1/0 processors, and 16 main memory units, plus auxiliary memory and peripheral devices. This multiprocessor system features a multilevel interrupt, qualified S/360 compatibility for ground-based generation of programs, virtual memory management of a storage hierarchy through 1/0 processors, and multiport access to multiple and shared memory units

    Influence of different abstractions on the performance analysis of distributed hard real-time systems

    Get PDF
    System level performance analysis plays a fundamental role in the design process of hard real-time embedded systems. Several different approaches have been presented so far to address the problem of accurate performance analysis of distributed embedded systems in early design stages. The existing formal analysis methods are based on essentially different concepts of abstraction. However, the influence of these different models on the accuracy of the system analysis is widely unknown, as a direct comparison of performance analysis methods has not been considered so far. We define a set of benchmarks aimed at the evaluation of performance analysis techniques for distributed systems. We apply different analysis methods to the benchmarks and compare the results obtained in terms of accuracy and analysis times, highlighting the specific effects of the various abstractions. We also point out several pitfalls for the analysis accuracy of single approaches and investigate the reasons for pessimistic performance prediction

    Using FPGAs to prototype a self-timed floating point co-processor

    Get PDF
    Journal ArticleSelf- timed circuits offer advantages over their synchronously clocked counterparts in a number of situations. However, self-timed design techniques are not widely used at present for a variety of reasons. One reason for the lack of experimentation with self-timed systems is the lack of commercially available parts to support this style of design. Field programmable gate arrays (FPGAs) offer an excellent alternative for the rapid development of novel system designs provided suitable circuit structures can be implemented. This paper describes a self-timed floating point co-processor built using a combination of Actel Field Programmable Gate Arrays (FPGAs) and semi-custom CMOS chips. This co-processor implements IEEE standard single precision floating point operations on 32-bit values. The control is completely self-timed. Data moves between parts of the circuit according to local constraints only: there is no global clock or global control circuit

    Module-based architecture for a periodic job-shop scheduling problem

    Get PDF
    AbstractThis paper addresses the Petri net (PN) based design and modeling approach for a periodic job-shop scheduling problem. Asynchronous synthesis for net-modules of the jobs is suggested in this paper for optimal allocation of shared resources to different operations. To make sure the completion of all the jobs in a single iteration of a production cycle and the correct calculation of a makespan, the synchronization problem among jobs is tackled by introducing the special synchronizing transition in the model. A timed-place PN is adopted for the purpose of finding the feasible schedule in terms of the firing sequence of the transitions of the PN model by using the heuristic search method. Further, the characterization of the PN model is performed and it is shown that the PN model for a periodic job-shop scheduling problem is equivalent to a class of PN known as parallel process net with resources (PPNRs). The modeling approach is demonstrated with a practical example and a makespan is calculated for the example

    Multicore XINU

    Get PDF
    Multicore architectures employ multiple processing cores that work together for greater processing power. Shared memory, symmetric multiprocessor (SMP) systems are ubiquitous. All software must be explicitly designed to support SMP processing, including operating systems. XINU is a simple, lightweight, elegant operating system that has existed for several decades and has been ported to many platforms. However, XINU has never been extended to support multicore processing. This project incrementally adds SMP support to the XINU operating system. Core kernel modules, including the scheduler and memory manager, have been successfully extended without overhauling or completely redesigning XINU. A multicore methodology is laid out for the remaining kernel modules
    • …
    corecore