4,757 research outputs found

    A cooperative approach for distributed task execution in autonomic clouds

    Get PDF
    Virtualization and distributed computing are two key pillars that guarantee scalability of applications deployed in the Cloud. In Autonomous Cooperative Cloud-based Platforms, autonomous computing nodes cooperate to offer a PaaS Cloud for the deployment of user applications. Each node must allocate the necessary resources for customer applications to be executed with certain QoS guarantees. If the QoS of an application cannot be guaranteed a node has mainly two options: to allocate more resources (if it is possible) or to rely on the collaboration of other nodes. Making a decision is not trivial since it involves many factors (e.g. the cost of setting up virtual machines, migrating applications, discovering collaborators). In this paper we present a model of such scenarios and experimental results validating the convenience of cooperative strategies over selfish ones, where nodes do not help each other. We describe the architecture of the platform of autonomous clouds and the main features of the model, which has been implemented and evaluated in the DEUS discrete-event simulator. From the experimental evaluation, based on workload data from the Google Cloud Backend, we can conclude that (modulo our assumptions and simplifications) the performance of a volunteer cloud can be compared to that of a Google Cluster

    Interdependent Scheduling Games

    Get PDF
    We propose a model of interdependent scheduling games in which each player controls a set of services that they schedule independently. A player is free to schedule his own services at any time; however, each of these services only begins to accrue reward for the player when all predecessor services, which may or may not be controlled by the same player, have been activated. This model, where players have interdependent services, is motivated by the problems faced in planning and coordinating large-scale infrastructures, e.g., restoring electricity and gas to residents after a natural disaster or providing medical care in a crisis when different agencies are responsible for the delivery of staff, equipment, and medicine. We undertake a game-theoretic analysis of this setting and in particular consider the issues of welfare maximization, computing best responses, Nash dynamics, and existence and computation of Nash equilibria.Comment: Accepted to IJCAI 201

    Trade & Cap: A Customer-Managed, Market-Based System for Trading Bandwidth Allowances at a Shared Link

    Full text link
    We propose Trade & Cap (T&C), an economics-inspired mechanism that incentivizes users to voluntarily coordinate their consumption of the bandwidth of a shared resource (e.g., a DSLAM link) so as to converge on what they perceive to be an equitable allocation, while ensuring efficient resource utilization. Under T&C, rather than acting as an arbiter, an Internet Service Provider (ISP) acts as an enforcer of what the community of rational users sharing the resource decides is a fair allocation of that resource. Our T&C mechanism proceeds in two phases. In the first, software agents acting on behalf of users engage in a strategic trading game in which each user agent selfishly chooses bandwidth slots to reserve in support of primary, interactive network usage activities. In the second phase, each user is allowed to acquire additional bandwidth slots in support of presumed open-ended need for fluid bandwidth, catering to secondary applications. The acquisition of this fluid bandwidth is subject to the remaining "buying power" of each user and by prevalent "market prices" – both of which are determined by the results of the trading phase and a desirable aggregate cap on link utilization. We present analytical results that establish the underpinnings of our T&C mechanism, including game-theoretic results pertaining to the trading phase, and pricing of fluid bandwidth allocation pertaining to the capping phase. Using real network traces, we present extensive experimental results that demonstrate the benefits of our scheme, which we also show to be practical by highlighting the salient features of an efficient implementation architecture.National Science Foundation (CCF-0820138, CSR-0720604, EFRI-0735974, CNS-0524477, and CNS-0520166); Universidad Pontificia Bolivariana and COLCIENCIAS–Instituto Colombiano para el Desarrollo de la Ciencia y la Tecnología “Francisco Jose ́ de Caldas”

    An agent-based simulation model using decoupled learning rules to (re)schedule multiple projects

    Get PDF
    Competitive pressures and business globalization have led many organizations, mainly technology-based and innovation-oriented companies, to adopt project-based organizational structures. In a multi-project context within enterprise networks, reaching feasible solutions to the multi-project (re)scheduling problem represents a major challenge, where autonomy and decentralization of the environment favor agent-based simulation This work presents and validates a simulation-based multi-agent model using the fractal company concept to solve the complex multi-project (re)scheduling problem in enterprise networks. The proposed agent-based model is tested trough a set of project instances that vary in project structure, project parameters, number of resources shared, unplanned events that affect them, etc. Results obtained are assessed through different scheduling goals, such project total duration, project total cost, leveling resource usage, among others to show that decoupled learning rules allows finding a solution which can be understood as a Nash equilibrium for the interacting agents and it is far better compared to the ones obtained with existing approaches.Eje: XVIII Workshop de Agentes y Sistemas Inteligentes (WASI).Red de Universidades con Carreras en Informática (RedUNCI

    An agent-based simulation model using decoupled learning rules to (re)schedule multiple projects

    Get PDF
    Competitive pressures and business globalization have led many organizations, mainly technology-based and innovation-oriented companies, to adopt project-based organizational structures. In a multi-project context within enterprise networks, reaching feasible solutions to the multi-project (re)scheduling problem represents a major challenge, where autonomy and decentralization of the environment favor agent-based simulation This work presents and validates a simulation-based multi-agent model using the fractal company concept to solve the complex multi-project (re)scheduling problem in enterprise networks. The proposed agent-based model is tested trough a set of project instances that vary in project structure, project parameters, number of resources shared, unplanned events that affect them, etc. Results obtained are assessed through different scheduling goals, such project total duration, project total cost, leveling resource usage, among others to show that decoupled learning rules allows finding a solution which can be understood as a Nash equilibrium for the interacting agents and it is far better compared to the ones obtained with existing approaches.Eje: XVIII Workshop de Agentes y Sistemas Inteligentes (WASI).Red de Universidades con Carreras en Informática (RedUNCI
    corecore