3,584 research outputs found

    Scheduling Sensors for Guaranteed Sparse Coverage

    Full text link
    Sensor networks are particularly applicable to the tracking of objects in motion. For such applications, it may not necessary that the whole region be covered by sensors as long as the uncovered region is not too large. This notion has been formalized by Balasubramanian et.al. as the problem of Îş\kappa-weak coverage. This model of coverage provides guarantees about the regions in which the objects may move undetected. In this paper, we analyse the theoretical aspects of the problem and provide guarantees about the lifetime achievable. We introduce a number of practical algorithms and analyse their significance. The main contribution is a novel linear programming based algorithm which provides near-optimal lifetime. Through extensive experimentation, we analyse the performance of these algorithms based on several parameters defined

    Self-Adaptive resource allocation for event monitoring with uncertainty in Sensor Networks

    Get PDF
    Event monitoring is an important application of sensor networks. Multiple parties, with different surveillance targets, can share the same network, with limited sensing resources, to monitor their events of interest simultaneously. Such a system achieves profit by allocating sensing resources to missions to collect event related information (e.g., videos, photos, electromagnetic signals). We address the problem of dynamically assigning resources to missions so as to achieve maximum profit with uncertainty in event occurrence. We consider timevarying resource demands and profits, and multiple concurrent surveillance missions. We model each mission as a sequence of monitoring attempts, each being allocated with a certain amount of resources, on a specific set of events that occurs as a Markov process. We propose a Self-Adaptive Resource Allocation algorithm (SARA) to adaptively and efficiently allocate resources according to the results of previous observations. By means of simulations we compare SARA to previous solutions and show SARA’s potential in finding higher profit in both static and dynamic scenarios

    Space-Time Sampling for Network Observability

    Full text link
    Designing sparse sampling strategies is one of the important components in having resilient estimation and control in networked systems as they make network design problems more cost-effective due to their reduced sampling requirements and less fragile to where and when samples are collected. It is shown that under what conditions taking coarse samples from a network will contain the same amount of information as a more finer set of samples. Our goal is to estimate initial condition of linear time-invariant networks using a set of noisy measurements. The observability condition is reformulated as the frame condition, where one can easily trace location and time stamps of each sample. We compare estimation quality of various sampling strategies using estimation measures, which depend on spectrum of the corresponding frame operators. Using properties of the minimal polynomial of the state matrix, deterministic and randomized methods are suggested to construct observability frames. Intrinsic tradeoffs assert that collecting samples from fewer subsystems dictates taking more samples (in average) per subsystem. Three scalable algorithms are developed to generate sparse space-time sampling strategies with explicit error bounds.Comment: Submitted to IEEE TAC (Revised Version

    Clustered wireless sensor networks

    Get PDF
    The study of topology in randomly deployed wireless sensor networks (WSNs) is important in addressing the fundamental issue of stochastic coverage resulting from randomness in the deployment procedure and power management algorithms. This dissertation defines and studies clustered WSNs, WSNs whose topology due to the deployment procedure and the application requirements results in the phenomenon of clustering or clumping of nodes. The first part of this dissertation analyzes a range of topologies of clustered WSNs and their impact on the primary sensing objectives of coverage and connectivity. By exploiting the inherent advantages of clustered topologies of nodes, this dissertation presents techniques for optimizing the primary performance metrics of power consumption and network capacity. It analyzes clustering in the presence of obstacles, and studies varying levels of redundancy to determine the probability of coverage in the network. The proposed models for clustered WSNs embrace the domain of a wide range of topologies that are prevalent in actual real-world deployment scenarios, and call for clustering-specific protocols to enhance network performance. It has been shown that power management algorithms tailored to various clustering scenarios optimize the level of active coverage and maximize the network lifetime. The second part of this dissertation addresses the problem of edge effects and heavy traffic on queuing in clustered WSNs. In particular, an admission control model called directed ignoring model has been developed that aims to minimize the impact of edge effects in queuing by improving queuing metrics such as packet loss and wait time

    A Method for Clustering and Cooperation in Wireless Multimedia Sensor Networks

    Get PDF
    Wireless multimedia sensor nodes sense areas that are uncorrelated to the areas covered by radio neighbouring sensors. Thus, node clustering for coordinating multimedia sensing and processing cannot be based on classical sensor clustering algorithms. This paper presents a clustering mechanism for Wireless Multimedia Sensor Networks (WMSNs) based on overlapped Field of View (FoV) areas. Overlapping FoVs in dense networks cause the wasting of power due to redundant area sensing. The main aim of the proposed clustering method is energy conservation and network lifetime prolongation. This objective is achieved through coordination of nodes belonging to the same cluster to perform assigned tasks in a cooperative manner avoiding redundant sensing or processing. A paradigm in this concept, a cooperative scheduling scheme for object detection, is presented based on the proposed clustering method

    LQG Control and Sensing Co-Design

    Full text link
    We investigate a Linear-Quadratic-Gaussian (LQG) control and sensing co-design problem, where one jointly designs sensing and control policies. We focus on the realistic case where the sensing design is selected among a finite set of available sensors, where each sensor is associated with a different cost (e.g., power consumption). We consider two dual problem instances: sensing-constrained LQG control, where one maximizes control performance subject to a sensor cost budget, and minimum-sensing LQG control, where one minimizes sensor cost subject to performance constraints. We prove no polynomial time algorithm guarantees across all problem instances a constant approximation factor from the optimal. Nonetheless, we present the first polynomial time algorithms with per-instance suboptimality guarantees. To this end, we leverage a separation principle, that partially decouples the design of sensing and control. Then, we frame LQG co-design as the optimization of approximately supermodular set functions; we develop novel algorithms to solve the problems; and we prove original results on the performance of the algorithms, and establish connections between their suboptimality and control-theoretic quantities. We conclude the paper by discussing two applications, namely, sensing-constrained formation control and resource-constrained robot navigation.Comment: Accepted to IEEE TAC. Includes contributions to submodular function optimization literature, and extends conference paper arXiv:1709.0882
    • …
    corecore