15 research outputs found

    REQUIREMENT- AWARE STRATEGIES FOR SCHEDULING MULTIPLE DIVISIBLE LOADS IN CLUSTER ENVIRONMENTS

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Geometric partitioning algorithms for fair division of geographic resources

    Get PDF
    University of Minnesota Ph.D. dissertation. July 2014. Major: Industrial and Systems Engineering. Advisor: John Gunnar Carlsson. 1 computer file (PDF): vi, 140 pages, appendices p. 129-140.This dissertation focuses on a fundamental but under-researched problem: how does one divide a piece of territory into smaller pieces in an efficient way? In particular, we are interested in \emph{map segmentation problem} of partitioning a geographic region into smaller subregions for allocating resources or distributing a workload among multiple agents. This work would result in useful solutions for a variety of fundamental problems, ranging from congressional districting, facility location, and supply chain management to air traffic control and vehicle routing. In a typical map segmentation problem, we are given a geographic region RR, a probability density function defined on RR (representing, say population density, distribution of a natural resource, or locations of clients) and a set of points in RR (representing, say service facilities or vehicle depots). We seek a \emph{partition} of RR that is a collection of disjoint sub-regions {R1,...,Rn}\{R_1, . . . , R_n\} such that iRi=R\bigcup_i R_i = R, that optimizes some objective function while satisfying a shape condition. As examples of shape conditions, we may require that all sub-regions be compact, convex, star convex, simply connected (not having holes), connected, or merely measurable.Such problems are difficult because the search space is infinite-dimensional (since we are designing boundaries between sub-regions) and because the shape conditions are generally difficult to enforce using standard optimization methods. There are also many interesting variants and extensions to this problem. It is often the case that the optimal partition for a problem changes over time as new information about the region is collected. In that case, we have an \emph{online} problem and we must re-draw the sub-region boundaries as time progresses. In addition, we often prefer to construct these sub-regions in a \emph{decentralized} fashion: that is, the sub-region assigned to agent ii should be computable using only local information to agent ii (such as nearby neighbors or information about its surroundings), and the optimal boundary between two sub-regions should be computable using only knowledge available to those two agents.This dissertation is an attempt to design geometric algorithms aiming to solve the above mentioned problems keeping in view the various design constraints. We describe the drawbacks of the current approach to solving map segmentation problems, its ineffectiveness to impose geometric shape conditions and its limited utility in solving the online version of the problem. Using an intrinsically interdisciplinary approach, combining elements from variational calculus, computational geometry, geometric probability theory, and vector space optimization, we present an approach where we formulate the problems geometrically and then use a fast geometric algorithm to solve them. We demonstrate our success by solving problems having a particular choice of objective function and enforcing certain shape conditions. In fact, it turns out that such methods actually give useful insights and algorithms into classical location problems such as the continuous kk-medians problem, where the aim is to find optimal locations for facilities. We use a map segmentation technique to present a constant factor approximation algorithm to solve the continuous kk-medians problem in a convex polygon. We conclude this thesis by describing how we intend to build on this success and develop algorithms to solve larger classes of these problems

    Dual-Use Space Technology Transfer Conference and Exhibition

    Get PDF
    This document contains papers presented at the Dual-Use Space Technology Transfer Conference and Exhibition held at the Johnson Space Center February 1-3, 1994. Possible technology transfers covered during the conference were in the areas of information access; innovative microwave and optical applications; materials and structures; marketing and barriers; intelligent systems; human factors and habitation; communications and data systems; business process and technology transfer; software engineering; biotechnology and advanced bioinstrumentation; communications signal processing and analysis; new ways of doing business; medical care; applications derived from control center data systems; human performance evaluation; technology transfer methods; mathematics, modeling, and simulation; propulsion; software analysis and decision tools systems/processes in human support technology; networks, control centers, and distributed systems; power; rapid development perception and vision technologies; integrated vehicle health management; automation technologies; advanced avionics; ans robotics technologies. More than 77 papers, 20 presentations, and 20 exhibits covering various disciplines were presented b experts from NASA, universities, and industry

    Scheduling multisource divisible loads on arbitrary networks

    No full text
    10.1109/TPDS.2009.62IEEE Transactions on Parallel and Distributed Systems214520-531ITDS

    Trust as a Competitive Parameter in the Construction Industry

    Get PDF

    Handling Soundness and Quality to Improve Reliability in LPS - A Case Study of an Offshore Construction Site in Denmark

    Get PDF

    Abstracts on Radio Direction Finding (1899 - 1995)

    Get PDF
    The files on this record represent the various databases that originally composed the CD-ROM issue of "Abstracts on Radio Direction Finding" database, which is now part of the Dudley Knox Library's Abstracts and Selected Full Text Documents on Radio Direction Finding (1899 - 1995) Collection. (See Calhoun record https://calhoun.nps.edu/handle/10945/57364 for further information on this collection and the bibliography). Due to issues of technological obsolescence preventing current and future audiences from accessing the bibliography, DKL exported and converted into the three files on this record the various databases contained in the CD-ROM. The contents of these files are: 1) RDFA_CompleteBibliography_xls.zip [RDFA_CompleteBibliography.xls: Metadata for the complete bibliography, in Excel 97-2003 Workbook format; RDFA_Glossary.xls: Glossary of terms, in Excel 97-2003 Workbookformat; RDFA_Biographies.xls: Biographies of leading figures, in Excel 97-2003 Workbook format]; 2) RDFA_CompleteBibliography_csv.zip [RDFA_CompleteBibliography.TXT: Metadata for the complete bibliography, in CSV format; RDFA_Glossary.TXT: Glossary of terms, in CSV format; RDFA_Biographies.TXT: Biographies of leading figures, in CSV format]; 3) RDFA_CompleteBibliography.pdf: A human readable display of the bibliographic data, as a means of double-checking any possible deviations due to conversion
    corecore