36 research outputs found

    Automated CNN pipeline generation for heterogeneous architectures

    Get PDF
    Heterogeneity is a vital feature in emerging processor chip designing. Asymmetric multicore-clusters such as high-performance cluster and power efficient cluster are common in modern edge devices. One example is Intel\u27s Alder Lake featuring Golden Cove high-performance cores and Gracemont power-efficient cores. Chiplet-based technology allows organization of multi cores in form of multi-chip-modules, thus housing large number of cores in a processor. Interposer based packaging has enabled embedding High Bandwidth Memory (HBM) on chip and reduced transmission latency and energy consumption of chiplet-chiplet interconnect.\ua0For Instance Intel\u27s XeHPC Ponte Vecchio package integrates multi-chip GPU organization along with HBM modules.Since new devices feature heterogeneity at the level of cores, memory and on-chip interconnect, it has become important to steer optimization at application level in order to leverage the new heterogeneous, high-performing and power-efficient features of underlying computing platforms. An important high-performance application paradigm is Convolution Neural Networks (CNN). CNNs are widely used in many practical applications. The pipelined parallel implementation of CNN is favored for inference on edge devices. In this Licentiate thesis we present a novel scheme for automatic scheduling of CNN pipelines on heterogeneous devices. A pipeline schedule is a configuration that provides information on depth of pipeline, grouping of CNN layers into pipeline stages and mapping of pipeline stages onto computing units. We utilize simple compile-time hints which consists of workload information of individual CNN layers and performance hints of computing units.The proposed approach provides near optimal solution for a throughput maximizing pipeline. We model the problem as a design space exploration technique. We developed a time-efficient design space navigation through heuristics extracted from the knowledge of CNN structure and underlying computing platform. The proposed search scheme converges faster and utilizes real-time performance measurements as fitness values. The results demonstrate that the proposed scheme converges faster and can scale when used with larger networks and computing platforms. Since the scheme utilizes online performance measurements, one of the challenges is to avoid expensive configurations during online tuning. The results demonstrate that on average, ~80\% of the tested configurations are sub-optimal solutions.Another challenge is to reduce convergence time. The experiments show that proposed approach is 35x faster than stochastic optimization algorithms. Since the design space is large and complex, We show that the proposed scheme explores only ~0.1% of the total design space in case of large CNNs (having 50+ layers) and results in near-optimal solution

    ERASE: Energy Efficient Task Mapping and Resource Management for Work Stealing Runtimes

    Get PDF
    Parallel applications often rely on work stealing schedulers in combination with fine-grained tasking to achieve high performance and scalability. However, reducing the total energy consumption in the context of work stealing runtimes is still challenging, particularly when using asymmetric architectures with different types of CPU cores. A common approach for energy savings involves dynamic voltage and frequency scaling (DVFS) wherein throttling is carried out based on factors like task parallelism, stealing relations, and task criticality. This article makes the following observations: (i) leveraging DVFS on a per-task basis is impractical when using fine-grained tasking and in environments with cluster/chip-level DVFS; (ii) task moldability, wherein a single task can execute on multiple threads/cores via work-sharing, can help to reduce energy consumption; and (iii) mismatch between tasks and assigned resources (i.e., core type and number of cores) can detrimentally impact energy consumption. In this article, we propose EneRgy Aware SchedulEr (ERASE), an intra-application task scheduler on top of work stealing runtimes that aims to reduce the total energy consumption of parallel applications. It achieves energy savings by guiding scheduling decisions based on per-task energy consumption predictions of different resource configurations. In addition, ERASE is capable of adapting to both given static frequency settings and externally controlled DVFS. Overall, ERASE achieves up to 31% energy savings and improves performance by 44% on average, compared to the state-of-the-art DVFS-based schedulers

    Scheduling Task-parallel Applications in Dynamically Asymmetric Environments

    Full text link
    Shared resource interference is observed by applications as dynamic performance asymmetry. Prior art has developed approaches to reduce the impact of performance asymmetry mainly at the operating system and architectural levels. In this work, we study how application-level scheduling techniques can leverage moldability (i.e. flexibility to work as either single-threaded or multithreaded task) and explicit knowledge on task criticality to handle scenarios in which system performance is not only unknown but also changing over time. Our proposed task scheduler dynamically learns the performance characteristics of the underlying platform and uses this knowledge to devise better schedules aware of dynamic performance asymmetry, hence reducing the impact of interference. Our evaluation shows that both criticality-aware scheduling and parallelism tuning are effective schemes to address interference in both shared and distributed memory applicationsComment: Published in ICPP Workshops '2

    Performance optimization and energy efficiency of big-data computing workflows

    Get PDF
    Next-generation e-science is producing colossal amounts of data, now frequently termed as Big Data, on the order of terabyte at present and petabyte or even exabyte in the predictable future. These scientific applications typically feature data-intensive workflows comprised of moldable parallel computing jobs, such as MapReduce, with intricate inter-job dependencies. The granularity of task partitioning in each moldable job of such big data workflows has a significant impact on workflow completion time, energy consumption, and financial cost if executed in clouds, which remains largely unexplored. This dissertation conducts an in-depth investigation into the properties of moldable jobs and provides an experiment-based validation of the performance model where the total workload of a moldable job increases along with the degree of parallelism. Furthermore, this dissertation conducts rigorous research on workflow execution dynamics in resource sharing environments and explores the interactions between workflow mapping and task scheduling on various computing platforms. A workflow optimization architecture is developed to seamlessly integrate three interrelated technical components, i.e., resource allocation, job mapping, and task scheduling. Cloud computing provides a cost-effective computing platform for big data workflows where moldable parallel computing models are widely applied to meet stringent performance requirements. Based on the moldable parallel computing performance model, a big-data workflow mapping model is constructed and a workflow mapping problem is formulated to minimize workflow makespan under a budget constraint in public clouds. This dissertation shows this problem to be strongly NP-complete and designs i) a fully polynomial-time approximation scheme for a special case with a pipeline-structured workflow executed on virtual machines of a single class, and ii) a heuristic for a generalized problem with an arbitrary directed acyclic graph-structured workflow executed on virtual machines of multiple classes. The performance superiority of the proposed solution is illustrated by extensive simulation-based results in Hadoop/YARN in comparison with existing workflow mapping models and algorithms. Considering that large-scale workflows for big data analytics have become a main consumer of energy in data centers, this dissertation also delves into the problem of static workflow mapping to minimize the dynamic energy consumption of a workflow request under a deadline constraint in Hadoop clusters, which is shown to be strongly NP-hard. A fully polynomial-time approximation scheme is designed for a special case with a pipeline-structured workflow on a homogeneous cluster and a heuristic is designed for the generalized problem with an arbitrary directed acyclic graph-structured workflow on a heterogeneous cluster. This problem is further extended to a dynamic version with deadline-constrained MapReduce workflows to minimize dynamic energy consumption in Hadoop clusters. This dissertation proposes a semi-dynamic online scheduling algorithm based on adaptive task partitioning to reduce dynamic energy consumption while meeting performance requirements from a global perspective, and also develops corresponding system modules for algorithm implementation in the Hadoop ecosystem. The performance superiority of the proposed solutions in terms of dynamic energy saving and deadline missing rate is illustrated by extensive simulation results in comparison with existing algorithms, and further validated through real-life workflow implementation and experiments using the Oozie workflow engine in Hadoop/YARN systems

    Contention energy-aware real-time task mapping on NoC based heterogeneous MPSoCs

    Get PDF
    © 2018 IEEE. Network-on-Chip (NoC)-based multiprocessor system-on-chips (MPSoCs) are becoming the de-facto computing platform for computationally intensive real-time applications in the embedded systems due to their high performance, exceptional quality-of-service (QoS) and energy efficiency over superscalar uniprocessor architectures. Energy saving is important in the embedded system because it reduces the operating cost while prolongs lifetime and improves the reliability of the system. In this paper, contention-aware energy efficient static mapping using NoC-based heterogeneous MPSoC for real-time tasks with an individual deadline and precedence constraints is investigated. Unlike other schemes task ordering, mapping, and voltage assignment are performed in an integrated manner to minimize the processing energy while explicitly reduce contention between the communications and communication energy. Furthermore, both dynamic voltage and frequency scaling and dynamic power management are used for energy consumption optimization. The developed contention-aware integrated task mapping and voltage assignment (CITM-VA) static energy management scheme performs tasks ordering using earliest latest finish time first (ELFTF) strategy that assigns priorities to the tasks having shorter latest finish time (LFT) over the tasks with longer LFT. It remaps every task to a processor and/or discrete voltage level that reduces processing energy consumption. Similarly, the communication energy is minimized by assigning discrete voltage levels to the NoC links. Further, total energy efficiency is achieved by putting the processor into a low-power state when feasible. Moreover, this approach resolves the contention between communications that traverse the same link by allocating links to communications with higher priority. The results obtained through extensive simulations of real-world benchmarks demonstrate that CITM-VA approach outperforms state-of-the-art technique and achieves an average 30% total energy improvement. Additionally, it maintains high QoS and robustness for real-time applications

    Contention & Energy-aware Real-time Task Mapping on NoC based Heterogeneous MPSoCs

    Get PDF
    Network-on-Chip (NoC)-based multiprocessor system-on-chips (MPSoCs) are becoming the de-facto computing platform for computationally intensive real-time applications in the embedded systems due to their high performance, exceptional quality-of-service (QoS) and energy efficiency over superscalar uniprocessor architectures. Energy saving is important in the embedded system because it reduces the operating cost while prolongs lifetime and improves the reliability of the system. In this paper, contention-aware energy efficient static mapping using NoC-based heterogeneous MPSoC for real-time tasks with an individual deadline and precedence constraints is investigated. Unlike other schemes task ordering, mapping, and voltage assignment are performed in an integrated manner to minimize the processing energy while explicitly reduce contention between the communications and communication energy. Furthermore, both dynamic voltage and frequency scaling and dynamic power management are used for energy consumption optimization. The developed contention-aware integrated task mapping and voltage assignment (CITM-VA) static energy management scheme performs tasks ordering using earliest latest finish time first (ELFTF) strategy that assigns priorities to the tasks having shorter latest finish time (LFT) over the tasks with longer LFT. It remaps every task to a processor and/or discrete voltage level that reduces processing energy consumption. Similarly, the communication energy is minimized by assigning discrete voltage levels to the NoC links. Further, total energy efficiency is achieved by putting the processor into a low-power state when feasible. Moreover, this approach resolves the contention between communications that traverse the same link by allocating links to communications with higher priority. The results obtained through extensive simulations of real-world benchmarks demonstrate that CITM-VA approach outperforms state-of-the-art technique and achieves an average ~30%..

    NASLMRP: Design of a Negotiation Aware Service Level Agreement Model for Resource Provisioning in Cloud Environments

    Get PDF
    Cloud resource provisioning requires examining tasks, dependencies, deadlines, and capacity distribution. Scalability is hindered by incomplete or complex models. Comprehensive models with low-to-moderate QoS are unsuitable for real-time scenarios. This research proposes a Negotiation Aware SLA Model for Resource Provisioning in cloud deployments to address these challenges. In the proposed model, a task-level SLA maximizes resource allocation fairness and incorporates task dependency for correlated task types. This process's new tasks are processed by an efficient hierarchical task clustering process. Priority is assigned to each task. For efficient provisioning, an Elephant Herding Optimization (EHO) model allocates resources to these clusters based on task deadline and make-span levels. The EHO Model suggests a fitness function that shortens the make-span and raises deadline awareness. Q-Learning is used in the VM-aware negotiation framework for capacity tuning and task-shifting to post-process allocated tasks for faster task execution with minimal overhead. Because of these operations, the proposed model outperforms state-of-the-art models in heterogeneous cloud configurations and across multiple task types. The proposed model outperformed existing models in terms of make-span, deadline hit ratio, 9.2% lower computational cycles, 4.9% lower energy consumption, and 5.4% lower computational complexity, making it suitable for large-scale, real-time task scheduling

    Bridging a Gap Between Research and Production: Contributions to Scheduling and Simulation

    Get PDF
    Large scale distributed computing infrastructures (e.g., data centers, grids, or clouds) are used by scientists from various domains to produce outstanding research results, such as the discovery of the Higgs Boson in High Energy Physics. These infrastructures are also studied by Computer Scientists to produce their own set of scientific results. Ideally, a virtuous circle should exist between Domain and Computer Scientists: the former raising challenges that could be addressed by the latter. Unfortunately, in many occasions, a gap exists that prevents such an ideal and fostering collaboration. This habilitation covers research works conducted in the fields of scheduling and simulation that contribute to the filling of this gap. It discusses the necessary conditions to achieve this goal and details concrete initiatives in this endeavor
    corecore