225 research outputs found

    Scheduling Markovian PERT networks with maximum-NPV objective.

    Get PDF
    We examine project scheduling with net-present-value objective and exponential activity durations, using a continuous-time Markov decision chain. Based on a judicious partitioning of the state space, we achieve a significant performance improvement compared to the existing algorithms.Project scheduling; Net present value; Stochastic activity durations; Exponential distribution;

    The Project Scheduling Problem with Non-Deterministic Activities Duration: A Literature Review

    Get PDF
    Purpose: The goal of this article is to provide an extensive literature review of the models and solution procedures proposed by many researchers interested on the Project Scheduling Problem with nondeterministic activities duration. Design/methodology/approach: This paper presents an exhaustive literature review, identifying the existing models where the activities duration were taken as uncertain or random parameters. In order to get published articles since 1996, was employed the Scopus database. The articles were selected on the basis of reviews of abstracts, methodologies, and conclusions. The results were classified according to following characteristics: year of publication, mathematical representation of the activities duration, solution techniques applied, and type of problem solved. Findings: Genetic Algorithms (GA) was pointed out as the main solution technique employed by researchers, and the Resource-Constrained Project Scheduling Problem (RCPSP) as the most studied type of problem. On the other hand, the application of new solution techniques, and the possibility of incorporating traditional methods into new PSP variants was presented as research trends. Originality/value: This literature review contents not only a descriptive analysis of the published articles but also a statistical information section in order to examine the state of the research activity carried out in relation to the Project Scheduling Problem with non-deterministic activities duration.Peer Reviewe

    Project scheduling for maximum NPV with variable activity durations and uncertain activity outcomes

    Full text link

    On the optimal resource allocation in projects considering the time value of money

    Get PDF
    The optimal resource allocation in stochastic activity networks had been previously developed by applying three different approaches: Dynamic Programming (DP), an Electromagnetism Algorithm (EMA) and an Evolutionary Algorithm (EVA). This paper presents an extension to the initial problem considering the value of money over time. This extended problem was implemented using the Java programming language, an Object Oriented Language, following the approaches previously used (DP, EMA and EVA).Fundação para a Ciência e a Tecnologia (FCT

    Project scheduling with modular project completion on a bottleneck resource.

    Get PDF
    In this paper, we model a research-and-development project as consisting of several modules, with each module containing one or more activities. We examine how to schedule the activities of such a project in order to maximize the expected profit when the activities have a probability of failure and when an activity’s failure can cause its module and thereby the overall project to fail. A module succeeds when at least one of its constituent activities is successfully executed. All activities are scheduled on a scarce resource that is modeled as a single machine. We describe various policy classes, establish the relationship between the classes, develop exact algorithms to optimize over two different classes (one dynamic program and one branch-and-bound algorithm), and examine the computational performance of the algorithms on two randomly generated instance sets.Scheduling; Uncertainty; Research and development; Activity failures; Modular precedence network;

    Pert using Fuzzy variables and probability distribution function randomly selected

    Get PDF
    Program Evaluation and Review Technique (PERT) is widely used for project management in real world applications. The aim of this paper is to simulate and analyze a PERT network under conditions of uncertainty though a hybrid model. The basic assumption is that a project under extreme conditions of uncertainty can be satisfactorily modelled by using simple fuzzy linguistic variables to estimate activities durations, and a probability distribution function randomly selected in order to measure the activity times. Fuzzy linguistic expressions are used to estimate the activity time. Activity parameters are calculated by using basic operations between triangular fuzzy numbers and centroid method with classical Beta PERT definition. For each activity time a probability distribution function is randomly selected from a set of four possible distributions commonly cited in the literature. Hypothetical projects with 4, 40, 400 and 4000 activities using the proposed model are analyzed; the project duration is estimated through Monte Carlo Simulation. Finally, results are analyzed and compared with classical Beta PERT technique

    A Markovian approach to the mathematical control of NPD projects

    Get PDF
    +182hlm.;23c

    A Study on Application of Strategic Planning And Operations Research Techniques in Open Cast Mining

    Get PDF
    Mining happens to be the second oldest industry in the world considering the agriculture as the first and the foremost. That primitive society relied nearly on mined produce that is reflected aptly through nomenclature such as Stone Age, Copper Age, Bronze Age and Iron Age. These nomenclatures rightly capture the ethos of the time that shows increasing complexity of people’s society’s relationship with mining produce and use of metals. Our remote ancestors did practice mining on hard rock. Mining remained with their common occupation to earn livelihood and meet their needs. Since they had meager requirement of fuels; their major need of fuel was met mostly from dense forests on the earth. As the time passed, they required to meet ever increasing standards of living. As a result, demand of fuel was felt as extremely necessary for the existence of mankind and it kept on growing. In order to meet ever increasing demand, mining of coal took a shape in one way or the other.

    Hybrid Fuzzy-Bayesian Dynamic Decision Support Tool for Resource-Based Scheduling of Construction Projects

    Get PDF
    Title from PDF of title page viewed September 7, 2017Dissertation advisor: Ceki HalmenVitaIncludes bibliographical references (pages 153-165)Thesis (Ph.D.)--School of Computing and Engineering and Bloch School of Management. University of Missouri--Kansas City, 2017This dissertation proposes a flexible and intelligent decision support tool for scheduling and resource allocation of construction projects. A hybrid Fuzzy-Bayesian scheduling network and a new optimization model and solution approach have been developed to assess the combinatory effect of different risk factors on scheduling and optimize the time-cost tradeoff. Developed decision support tool employs interval-valued fuzzy numbers and Bayesian networks to dynamically quantify uncertainty and predict project performance during its make span. Using interval-valued fuzzy numbers makes the model more flexible and intelligent comparing to conventional fuzzy risk assessment models through incorporating the decision makers` confidence degree. The linguistic assessments of experts regarding the likelihood and severity of increase or decrease in task duration and cost when influenced by different risk factors are used to generate a set of duration and cost prior-probability distributions. A learning dynamic Bayesian scheduling network is developed to probabilistically combine the prior-probability distributions with initial activity duration estimates and update them as new evidence in form of actual activity data feed into the network. This model also predicts project performance at any point of time during its execution. Optimization model explicitly considers variation of time-cost tradeoff relationship during project execution and complex payment terms to maximize the project net present value (NPV). A sequential solution approach is proposed to combine a procedure for updating time-cost tradeoff data, and mixed integer linear programming (MILP) methods to obtain optimal project crashing and scheduling solutions that is adaptive to the current project status and crew productivity. Capability of proposed model in quantifying uncertainty at initial phases of project where project performance data are scarce, learning from data and predicting project performance, considering financial aspects of scheduling through optimal resource allocation and providing useful and clear advice to managers are advantages of developed decision support tool over already existing approaches.Introduction -- Literature review -- Methodology -- Case study and model validation -- Conclusion and recommendations -- Appendix. Detailed Fuzzy Weighted Average Calculations for a-cut = 0 Based on the Max-Min Paired Elimination Algorit
    corecore