456 research outputs found

    A hyper-heuristic for adaptive scheduling in computational grids

    Get PDF
    In this paper we present the design and implementation of an hyper-heuristic for efficiently scheduling independent jobs in computational grids. An efficient scheduling of jobs to grid resources depends on many parameters, among others, the characteristics of the resources and jobs (such as computing capacity, consistency of computing, workload, etc.). Moreover, these characteristics change over time due to the dynamic nature of grid environment, therefore the planning of jobs to resources should be adaptively done. Existing ad hoc scheduling methods (batch and immediate mode) have shown their efficacy for certain types of resource and job characteristics. However, as stand alone methods, they are not able to produce the best planning of jobs to resources for different types of Grid resources and job characteristics. In this work we have designed and implemented a hyper-heuristic that uses a set of ad hoc (immediate and batch mode) scheduling methods to provide the scheduling of jobs to Grid resources according to the Grid and job characteristics. The hyper-heuristic is a high level algorithm, which examines the state and characteristics of the Grid system (jobs and resources), and selects and applies the ad hoc method that yields the best planning of jobs. The resulting hyper-heuristic based scheduler can be thus used to develop network-aware applications that need efficient planning of jobs to resources. The hyper-heuristic has been tested and evaluated in a dynamic setting through a prototype of a Grid simulator. The experimental evaluation showed the usefulness of the hyper-heuristic for planning of jobs to resources as compared to planning without knowledge of the resource and job characteristics.Peer ReviewedPostprint (author's final draft

    Introducing risk management into the grid

    Get PDF
    Service Level Agreements (SLAs) are explicit statements about all expectations and obligations in the business partnership between customers and providers. They have been introduced in Grid computing to overcome the best effort approach, making the Grid more interesting for commercial applications. However, decisions on negotiation and system management still rely on static approaches, not reflecting the risk linked with decisions. The EC-funded project "AssessGrid" aims at introducing risk assessment and management as a novel decision paradigm into Grid computing. This paper gives a general motivation for risk management and presents the envisaged architecture of a "risk-aware" Grid middleware and Grid fabric, highlighting its functionality by means of three showcase scenarios

    MOON: MapReduce On Opportunistic eNvironments

    Get PDF
    Abstract—MapReduce offers a flexible programming model for processing and generating large data sets on dedicated resources, where only a small fraction of such resources are every unavailable at any given time. In contrast, when MapReduce is run on volunteer computing systems, which opportunistically harness idle desktop computers via frameworks like Condor, it results in poor performance due to the volatility of the resources, in particular, the high rate of node unavailability. Specifically, the data and task replication scheme adopted by existing MapReduce implementations is woefully inadequate for resources with high unavailability. To address this, we propose MOON, short for MapReduce On Opportunistic eNvironments. MOON extends Hadoop, an open-source implementation of MapReduce, with adaptive task and data scheduling algorithms in order to offer reliable MapReduce services on a hybrid resource architecture, where volunteer computing systems are supplemented by a small set of dedicated nodes. The adaptive task and data scheduling algorithms in MOON distinguish between (1) different types of MapReduce data and (2) different types of node outages in order to strategically place tasks and data on both volatile and dedicated nodes. Our tests demonstrate that MOON can deliver a 3-fold performance improvement to Hadoop in volatile, volunteer computing environments

    Tuning struggle strategy in genetic algorithms for scheduling in computational grids

    Get PDF
    Job Scheduling on Computational Grids is gaining importance due to the need for efficient large-scale Grid-enabled applications. Among different optimization techniques addressed for the problem, Genetic Algorithm (GA) is a popular class of solution methods. As GAs are high level algorithms, specific algorithms can be designed by choosing the genetic operators as well as the evolutionary strategies. In this paper we focus on Struggle GAs and their tuning for the scheduling of independent jobs in computational grids. Our results showed that a careful hash implementation for computing the similarity of solutions was able to alleviate the computational burden of Struggle GA and perform better than standard similarity measures.Peer ReviewedPostprint (published version

    Genetic algorithm based schedulers for grid computing systems

    Get PDF
    In this paper we present Genetic Algorithms (GAs) based schedulers for efficiently allocating jobs to resources in a Grid system. Scheduling is a key problem in emergent computational systems, such as Grid and P2P, in order to benefit from the large computing capacity of such systems. We present an extensive study on the usefulness of GAs for designing efficient Grid schedulers when makespan and flowtime are minimized. Two encoding schemes have been considered and most of GA operators for each of them are implemented and empirically studied. The extensive experimental study showed that our GA-based schedulers outperform existing GA implementations in the literature for the problem and also revealed their efficiency when makespan and flowtime are minimized either in a hierarchical or a simultaneous optimization mode; previous approaches considered only the minimization of the makespan. Moreover, we were able to identify which GAs versions work best under certain Grid characteristics, which is very useful for real Grids. Our GA-based schedulers are very fast and hence they can be used to dynamically schedule jobs arriving in the Grid system by running in batch mode for a short time.Peer ReviewedPostprint (author's final draft
    corecore