369 research outputs found

    Joint buffer management and scheduling for input queued switches

    Get PDF
    Input queued (IQ) switches are highly scalable and they have been the focus of many studies from academia and industry. Many scheduling algorithms have been proposed for IQ switches. However, they do not consider the buffer space requirement inside an IQ switch that may render the scheduling algorithms inefficient in practical applications. In this dissertation, the Queue Length Proportional (QLP) algorithm is proposed for IQ switches. QLP considers both the buffer management and the scheduling mechanism to obtain the optimal allocation region for both bandwidth and buffer space according to real traffic load. In addition, this dissertation introduces the Queue Proportional Fairness (QPF) criterion, which employs the cell loss ratio as the fairness metric. The research in this dissertation will show that the utilization of network resources will be improved significantly with QPF. Furthermore, to support diverse Quality of Service (QoS) requirements of heterogeneous and bursty traffic, the Weighted Minmax algorithm (WMinmax) is proposed to efficiently and dynamically allocate network resources. Lastly, to support traffic with multiple priorities and also to handle the decouple problem in practice, this dissertation introduces the multiple dimension scheduling algorithm which aims to find the optimal scheduling region in the multiple Euclidean space

    On scheduling input queued cell switches

    Get PDF
    Output-queued switching, though is able to offer high throughput, guaranteed delay and fairness, lacks scalability owing to the speed up problem. Input-queued switching, on the other hand, is scalable, and is thus becoming an attractive alternative. This dissertation presents three approaches toward resolving the major problem encountered in input-queued switching that has prohibited the provision of quality of service guarantees. First, we proposed a maximum size matching based algorithm, referred to as min-max fair input queueing (MFIQ), which minimizes the additional delay caused by back pressure, and at the same time provides fair service among competing sessions. Like any maximum size matching algorithm, MFIQ performs well for uniform traffic, in which the destinations of the incoming cells are uniformly distributed over all the outputs, but is not stable for non-uniform traffic. Subse-quently, we proposed two maximum weight matching based algorithms, longest normalized queue first (LNQF) and earliest due date first matching (EDDFM), which are stable for both uniform and non-uniform traffic. LNQF provides fairer service than longest queue first (LQF) and better traffic shaping than oldest cell first (OCF), and EDDEM has lower probability of delay overdue than LQF, LNQF, and OCF. Our third approach, referred to as store-sort-and-forward (SSF), is a frame based scheduling algorithm. SSF is proved to be able to achieve strict sense 100% throughput, and provide bounded delay and delay jitter for input-queued switches if the traffic conforms to the (r, T) model

    Scheduling algorithms for high-speed switches

    Get PDF
    The virtual output queued (VOQ) switching architecture was adopted for high speed switch implementation owing to its scalability and high throughput. An ideal VOQ algorithm should provide Quality of Service (QoS) with low complexity. However, none of the existing algorithms can meet these requirements. Several algorithms for VOQ switches are introduced in this dissertation in order to improve upon existing algorithms in terms of implementation or QoS features. Initially, the earliest due date first matching (EDDFM) algorithm, which is stable for both uniform and non-uniform traffic patterns, is proposed. EDDFM has lower probability of cell overdue than other existing maximum weight matching algorithms. Then, the shadow departure time algorithm (SDTA) and iterative SDTA (ISDTA) are introduced. The QoS features of SDTA and ISDTA are better than other existing algorithms with the same computational complexity. Simulations show that the performance of a VOQ switch using ISDTA with a speedup of 1.5 is similar to that of an output queued (OQ) switch in terms of cell delay and throughput. Later, the enhanced Birkhoff-von Neumann decomposition (EBVND) algorithm based on the Birkhoff-von Neumann decomposition (BVND) algorithm, which can provide rate and cell delay guarantees, is introduced. Theoretical analysis shows that the performance of EBVND is better than BVND in terms of throughput and cell delay. Finally, the maximum credit first (MCF), the Enhanced MCF (EMCF), and the iterative MCF (IMCF) algorithms are presented. These new algorithms have the similar performance as BNVD, yet are easier to implement in practice

    Design and analysis of a scalable terabit multicast packet switch : architecture and scheduling algorithms

    Get PDF
    Internet growth and success not only open a primary route of information exchange for millions of people around the world, but also create unprecedented demand for core network capacity. Existing switches/routers, due to the bottleneck from either switch architecture or arbitration complexity, can reach a capacity on the order of gigabits per second, but few of them are scalable to large capacity of terabits per second. In this dissertation, we propose three novel switch architectures with cooperated scheduling algorithms to design a terabit backbone switch/router which is able to deliver large capacity, multicasting, and high performance along with Quality of Service (QoS). Our switch designs benefit from unique features of modular switch architecture and distributed resource allocation scheme. Switch I is a unique and modular design characterized by input and output link sharing. Link sharing resolves output contention and eliminates speedup requirement for central switch fabric. Hence, the switch architecture is scalable to any large size. We propose a distributed round robin (RR) scheduling algorithm which provides fairness and has very low arbitration complexity. Switch I can achieve good performance under uniform traffic. However, Switch I does not perform well for non-uniform traffic. Switch II, as a modified switch design, employs link sharing as well as a token ring to pursue a solution to overcome the drawback of Switch 1. We propose a round robin prioritized link reservation (RR+POLR) algorithm which results in an improved performance especially under non-uniform traffic. However, RR+POLR algorithm is not flexible enough to adapt to the input traffic. In Switch II, the link reservation rate has a great impact on switch performance. Finally, Switch III is proposed as an enhanced switch design using link sharing and dual round robin rings. Packet forwarding is based on link reservation. We propose a queue occupancy based dynamic link reservation (QOBDLR) algorithm which can adapt to the input traffic to provide a fast and fair link resource allocation. QOBDLR algorithm is a distributed resource allocation scheme in the sense that dynamic link reservation is carried out according to local available information. Arbitration complexity is very low. Compared to the output queued (OQ) switch which is known to offer the best performance under any traffic pattern, Switch III not only achieves performance as good as the OQ switch, but also overcomes speedup problem which seriously limits the OQ switch to be a scalable switch design. Hence, Switch III would be a good choice for high performance, scalable, large-capacity core switches

    Scheduling Architectures for DiffServ Networks with Input Queuing Switches

    Full text link
    ue to its simplicity and scalability, the differentiated services (DiffServ) model is expected to be widely deployed across wired and wireless networks. Though supporting DiffServ scheduling algorithms for output-queuing (OQ) switches have been widely studied, there are few DiffServ scheduling algorithms for input-queuing (IQ) switches in the literaure. In this paper, we propose two algorithms for scheduling DiffServ DiffServ networks with IQ switches: the dynamic DiffServ scheduling (DDS) algorithm and the hierarchical DiffServ scheduling (HDS) algorithm. The basic idea of DDS and HDS is to schedule EF and AF traffic According to Their minimum service rates with the reserved bandwidth and schedule AF and BE traffic fairly with the excess bandwidth. Both DDS and HDS find a maximal weight matching but in different ways. DDS employs a Centralized scheduling scheme. HDS features a hierarchical scheduling scheme That Consists of two levels of schedulers: the central scheduler and port schedulers. Using such a hierarchical scheme, the Implementation complexity and the amount of information needs to be Transmitted between input ports and the central scheduler for HDS are dramatically reduced Compared with DDS. Through simulations, we show That both DDS and HDS popup Guarantees a minimum bandwidth for EF and AF traffic, as well as fair bandwidth allocation for BE traffic. The delay and jitter performance of the DDS is close to That of PQWRR, an existing DiffServ supporting scheduling algorithm for OQ switches. The tradeoff of the simpler Implementation scheme of HDS is its slightly worse delay performance Compared with DDS

    On packet switch design

    Get PDF

    Design of switch architecture for the geographical cell transport protocol

    Get PDF
    The Internet is divided into multiple layers to reduce and manage complexity. The International Organization for Standardization (ISO) developed a 7 layer network model and had been revised to a 5 layer TCP/IP based Internet Model. The layers of the Internet can also be divided into top layer TCP/IP protocol suite layers and the underlying transport network layers. SONET/SDH, a dominant transport network, was designed initially for circuit based telephony services. Advancement in the internet world with voice and video services had pushed SONET/SDH to operate with reduced efficiencies and increased costs. Hence, redesign and redeployment of the transport network has been and continues to be a subject of research and development. Several projects are underway to explore new transport network ideas such as G.709 and GMPLS. This dissertation presents the Geographical Cell Transport (GCT) protocol as a candidate for a next generation transport network. The GCT transport protocol and its cell format are described. The benefits provided by the proposed GCT transport protocol as compared to the existing transport networks are investigated. Existing switch architectures are explored and a best architecture to be implemented in VLSI for the proposed transport network input queued virtual output queuing is obtained. The objectives of this switch are high performance, guaranteed fairness among all inputs and outputs, robust behavior under different traffic patterns, and support for Quality of Service (QoS) provisioning. An implementation of this switch architecture is carried out using HDL. A novel pseudo random number generation unit is designed to nullify the bias present in an arbitration unit. The validity of the designed is checked by developing a traffic load model. The speedup factor required in the switch to maintain desired throughput is explored and is presented in detail. Various simulation results are shown to study the behavior of the designed switch under uniform and hotspot traffic. The simulation results show that QoS behavior and the crossing traffic through the switch has not been affected by hotspots

    Deadline-ordered burst-based parallel scheduling strategy for IP-over-ATM with QoS support.

    Get PDF
    Siu Chun.Thesis (M.Phil.)--Chinese University of Hong Kong, 2001.Includes bibliographical references (leaves 66-68).Abstracts in English and Chinese.Chapter 1 --- Introduction --- p.1Chapter 1.1 --- Thesis Overview --- p.3Chapter 2 --- Background and Related work --- p.4Chapter 2.1 --- Emergence of IP-over-ATM --- p.4Chapter 2.2 --- ATM architecture --- p.5Chapter 2.3 --- Scheduling issues in output-queued switch --- p.6Chapter 2.4 --- Scheduling issues in input-queued switch --- p.18Chapter 3 --- The Deadline-ordered Burst-based Parallel Scheduling Strategy --- p.23Chapter 3.1 --- Introduction --- p.23Chapter 3.2 --- Switch and queueing model --- p.24Chapter 3.2.1 --- Switch model --- p.24Chapter 3.2.2 --- Queueing model --- p.25Chapter 3.3 --- The DBPS Strategy --- p.26Chapter 3.3.1 --- Motivation --- p.26Chapter 3.3.2 --- Strategy --- p.31Chapter 3.4 --- The Deadline-ordered Burst-based Parallel Iterative Matching --- p.33Chapter 3.4.1 --- Algorithm --- p.34Chapter 3.4.2 --- An example of DBPIM --- p.35Chapter 3.5 --- Simulation results --- p.33Chapter 3.6 --- Discussions --- p.46Chapter 3.7 --- Future work --- p.47Chapter 4 --- The Quasi-static DBPIM Algorithm --- p.50Chapter 4.1 --- Introduction --- p.50Chapter 4.2 --- Quasi-static path scheduling principle --- p.51Chapter 4.3 --- Quasi-static DBPIM algorithm --- p.56Chapter 4.4 --- An example of Quasi-static DBPIM --- p.59Chapter 5 --- Conclusion --- p.63Bibliography --- p.6
    • …
    corecore