11,132 research outputs found

    Provendo robustez a escalonadores de workflows sensíveis às incertezas da largura de banda disponível

    Get PDF
    Orientadores: Edmundo Roberto Mauro Madeira, Luiz Fernando BittencourtTese (doutorado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: Para que escalonadores de aplicações científicas modeladas como workflows derivem escalonamentos eficientes em nuvens híbridas, é necessário que se forneçam, além da descrição da demanda computacional desses aplicativos, as informações sobre o poder de computação dos recursos disponíveis, especialmente aqueles dados relacionados com a largura de banda disponível. Entretanto, a imprecisão das ferramentas de medição fazem com que as informações da largura de banda disponível fornecida aos escalonadores difiram dos valores reais que deveriam ser considerados para se obter escalonamentos quase ótimos. Escalonadores especialmente projetados para nuvens híbridas simplesmente ignoram a existência de tais imprecisões e terminam produzindo escalonamentos enganosos e de baixo desempenho, o que os tornam sensíveis às informações incertas. A presente Tese introduz um procedimento pró-ativo para fornecer um certo nível de robustez a escalonamentos derivados de escalonadores não projetados para serem robustos frente às incertezas decorrentes do uso de informações imprecisas dadas por ferramentas de medições de rede. Para tornar os escalonamentos sensíveis às incertezas em escalonamentos robustos às essas imprecisões, o procedimento propõe um refinamento (uma deflação) das estimativas da largura de banda antes de serem utilizadas pelo escalonador não robusto. Ao propor o uso de estimativas refinadas da largura de banda disponível, escalonadores inicialmente sensíveis às incertezas passaram a produzir escalonamentos com um certo nível de robustez às essas imprecisões. A eficácia e a eficiência do procedimento proposto são avaliadas através de simulação. Comparam-se, portanto, os escalonamentos gerados por escalonadores que passaram a usar o procedimento proposto com aqueles produzidos pelos mesmos escalonadores mas sem aplicar esse procedimento. Os resultados das simulações mostram que o procedimento proposto é capaz de prover robustez às incertezas da informação da largura de banda a escalonamentos derivados de escalonardes não robustos às tais incertezas. Adicionalmente, esta Tese também propõe um escalonador de aplicações científicas especialmente compostas por um conjunto de workflows. A novidade desse escalonador é que ele é flexível, ou seja, permite o uso de diferentes categorias de funções objetivos. Embora a flexibilidade proposta seja uma novidade no estado da arte, esse escalonador também é sensível às imprecisões da largura de banda. Entretanto, o procedimento mostrou-se capaz de provê-lo de robustez frente às tais incertezas. É mostrado nesta Tese que o procedimento proposto aumentou a eficácia e a eficiência de escalonadores de workflows não robustos projetados para nuvens híbridas, já que eles passaram a produzir escalonamentos com um certo nível de robustez na presença de estimativas incertas da largura de banda disponível. Dessa forma, o procedimento proposto nesta Tese é uma importante ferramenta para aprimorar os escalonadores sensíveis às estimativas incertas da banda disponível especialmente projetados para um ambiente computacional onde esses valores são imprecisos por natureza. Portanto, esta Tese propõe um procedimento que promove melhorias nas execuções de aplicações científicas em nuvens híbridasAbstract: To derive efficient schedules for the tasks of scientific applications modelled as workflows, schedulers need information on the application demands as well as on the resource availability, especially those regarding the available bandwidth. However, the lack of precision of bandwidth estimates provided by monitoring/measurement tools should be considered by the scheduler to achieve near-optimal schedules. Uncertainties of available bandwidth can be a result of imprecise measurement and monitoring network tools and/or their incapacity of estimating in advance the real value of the available bandwidth expected for the application during the scheduling step of the application. Schedulers specially designed for hybrid clouds simply ignore the inaccuracies of the given estimates and end up producing non-robust, low-performance schedules, which makes them sensitive to the uncertainties stemming from using these networking tools. This thesis introduces a proactive procedure to provide a certain level of robustness for schedules derived from schedulers that were not designed to be robust in the face of uncertainties of bandwidth estimates stemming from using unreliable networking tools. To make non-robust schedulers into robust schedulers, the procedure applies a deflation on imprecise bandwidth estimates before being used as input to non-robust schedulers. By proposing the use of refined (deflated) estimates of the available bandwidth, non-robust schedulers initially sensitive to these uncertainties started to produce robust schedules that are insensitive to these inaccuracies. The effectiveness and efficiency of the procedure in providing robustness to non-robust schedulers are evaluated through simulation. Schedules generated by induced-robustness schedulers through the use of the procedure is compared to that of produced by sensitive schedulers. In addition, this thesis also introduces a flexible scheduler for a special case of scientific applications modelled as a set of workflows grouped into ensembles. Although the novelty of this scheduler is the replacement of objective functions according to the user's needs, it is still a non-robust scheduler. However, the procedure was able to provide the necessary robustness for this flexible scheduler be able to produce robust schedules under uncertain bandwidth estimates. It is shown in this thesis that the proposed procedure enhanced the robustness of workflow schedulers designed especially for hybrid clouds as they started to produce robust schedules in the presence of uncertainties stemming from using networking tools. The proposed procedure is an important tool to furnish robustness to non-robust schedulers that are originally designed to work in a computational environment where bandwidth estimates are very likely to vary and cannot be estimated precisely in advance, bringing, therefore, improvements to the executions of scientific applications in hybrid cloudsDoutoradoCiência da ComputaçãoDoutor em Ciência da Computação2012/02778-6FAPES

    Efficient energy management for the internet of things in smart cities

    Get PDF
    The drastic increase in urbanization over the past few years requires sustainable, efficient, and smart solutions for transportation, governance, environment, quality of life, and so on. The Internet of Things offers many sophisticated and ubiquitous applications for smart cities. The energy demand of IoT applications is increased, while IoT devices continue to grow in both numbers and requirements. Therefore, smart city solutions must have the ability to efficiently utilize energy and handle the associated challenges. Energy management is considered as a key paradigm for the realization of complex energy systems in smart cities. In this article, we present a brief overview of energy management and challenges in smart cities. We then provide a unifying framework for energy-efficient optimization and scheduling of IoT-based smart cities. We also discuss the energy harvesting in smart cities, which is a promising solution for extending the lifetime of low-power devices and its related challenges. We detail two case studies. The first one targets energy-efficient scheduling in smart homes, and the second covers wireless power transfer for IoT devices in smart cities. Simulation results for the case studies demonstrate the tremendous impact of energy-efficient scheduling optimization and wireless power transfer on the performance of IoT in smart cities

    Cloud computing resource scheduling and a survey of its evolutionary approaches

    Get PDF
    A disruptive technology fundamentally transforming the way that computing services are delivered, cloud computing offers information and communication technology users a new dimension of convenience of resources, as services via the Internet. Because cloud provides a finite pool of virtualized on-demand resources, optimally scheduling them has become an essential and rewarding topic, where a trend of using Evolutionary Computation (EC) algorithms is emerging rapidly. Through analyzing the cloud computing architecture, this survey first presents taxonomy at two levels of scheduling cloud resources. It then paints a landscape of the scheduling problem and solutions. According to the taxonomy, a comprehensive survey of state-of-the-art approaches is presented systematically. Looking forward, challenges and potential future research directions are investigated and invited, including real-time scheduling, adaptive dynamic scheduling, large-scale scheduling, multiobjective scheduling, and distributed and parallel scheduling. At the dawn of Industry 4.0, cloud computing scheduling for cyber-physical integration with the presence of big data is also discussed. Research in this area is only in its infancy, but with the rapid fusion of information and data technology, more exciting and agenda-setting topics are likely to emerge on the horizon

    Many-Task Computing and Blue Waters

    Full text link
    This report discusses many-task computing (MTC) generically and in the context of the proposed Blue Waters systems, which is planned to be the largest NSF-funded supercomputer when it begins production use in 2012. The aim of this report is to inform the BW project about MTC, including understanding aspects of MTC applications that can be used to characterize the domain and understanding the implications of these aspects to middleware and policies. Many MTC applications do not neatly fit the stereotypes of high-performance computing (HPC) or high-throughput computing (HTC) applications. Like HTC applications, by definition MTC applications are structured as graphs of discrete tasks, with explicit input and output dependencies forming the graph edges. However, MTC applications have significant features that distinguish them from typical HTC applications. In particular, different engineering constraints for hardware and software must be met in order to support these applications. HTC applications have traditionally run on platforms such as grids and clusters, through either workflow systems or parallel programming systems. MTC applications, in contrast, will often demand a short time to solution, may be communication intensive or data intensive, and may comprise very short tasks. Therefore, hardware and software for MTC must be engineered to support the additional communication and I/O and must minimize task dispatch overheads. The hardware of large-scale HPC systems, with its high degree of parallelism and support for intensive communication, is well suited for MTC applications. However, HPC systems often lack a dynamic resource-provisioning feature, are not ideal for task communication via the file system, and have an I/O system that is not optimized for MTC-style applications. Hence, additional software support is likely to be required to gain full benefit from the HPC hardware

    SHADHO: Massively Scalable Hardware-Aware Distributed Hyperparameter Optimization

    Full text link
    Computer vision is experiencing an AI renaissance, in which machine learning models are expediting important breakthroughs in academic research and commercial applications. Effectively training these models, however, is not trivial due in part to hyperparameters: user-configured values that control a model's ability to learn from data. Existing hyperparameter optimization methods are highly parallel but make no effort to balance the search across heterogeneous hardware or to prioritize searching high-impact spaces. In this paper, we introduce a framework for massively Scalable Hardware-Aware Distributed Hyperparameter Optimization (SHADHO). Our framework calculates the relative complexity of each search space and monitors performance on the learning task over all trials. These metrics are then used as heuristics to assign hyperparameters to distributed workers based on their hardware. We first demonstrate that our framework achieves double the throughput of a standard distributed hyperparameter optimization framework by optimizing SVM for MNIST using 150 distributed workers. We then conduct model search with SHADHO over the course of one week using 74 GPUs across two compute clusters to optimize U-Net for a cell segmentation task, discovering 515 models that achieve a lower validation loss than standard U-Net.Comment: 10 pages, 6 figure

    A rolling horizon approach for optimal management of microgrids under stochastic uncertainty

    Get PDF
    This work presents a Mixed Integer Linear Programming (MILP) approach based on a combination of a rolling horizon and stochastic programming formulation. The objective of the proposed formulation is the optimal management of the supply and demand of energy and heat in microgrids under uncertainty, in order to minimise the operational cost. Delays in the starting time of energy demands are allowed within a predefined time windows to tackle flexible demand profiles. This approach uses a scenario-based stochastic programming formulation. These scenarios consider uncertainty in the wind speed forecast, the processing time of the energy tasks and the overall heat demand, to take into account all possible scenarios related to the generation and demand of energy and heat. Nevertheless, embracing all external scenarios associated with wind speed prediction makes their consideration computationally intractable. Thus, updating input information (e.g., wind speed forecast) is required to guarantee good quality and practical solutions. Hence, the two-stage stochastic MILP formulation is introduced into a rolling horizon approach that periodically updates input information
    • …
    corecore