98 research outputs found

    Parallel resource co-allocation for the computational grid

    Get PDF
    Author name used in this publication: K. W. Chau2006-2007 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    CASCH: a tool for computer-aided scheduling

    Get PDF
    A software tool called Computer-Aided Scheduling (CASCH) for parallel processing on distributed-memory multiprocessors in a complete parallel programming environment is presented. A compiler automatically converts sequential applications into parallel codes to perform program parallelization. The parallel code that executes on a target machine is optimized by CASCH through proper scheduling and mapping.published_or_final_versio

    Static Scheduling Strategies for Heterogeneous Systems

    Get PDF
    In this paper, we consider static scheduling techniques for heterogeneous systems, such as clusters and grids. We successively deal with minimum makespan scheduling, divisible load scheduling and steady-state scheduling. Finally, we discuss the limitations of static scheduling approaches

    Scheduling in Grid Computing Environment

    Full text link
    Scheduling in Grid computing has been active area of research since its beginning. However, beginners find very difficult to understand related concepts due to a large learning curve of Grid computing. Thus, there is a need of concise understanding of scheduling in Grid computing area. This paper strives to present concise understanding of scheduling and related understanding of Grid computing system. The paper describes overall picture of Grid computing and discusses important sub-systems that enable Grid computing possible. Moreover, the paper also discusses concepts of resource scheduling and application scheduling and also presents classification of scheduling algorithms. Furthermore, the paper also presents methodology used for evaluating scheduling algorithms including both real system and simulation based approaches. The presented work on scheduling in Grid containing concise understandings of scheduling system, scheduling algorithm, and scheduling methodology would be very useful to users and researchersComment: Fourth International Conference on Advanced Computing & Communication Technologies (ACCT), 201

    Redundant dataflow applications on clustered manycore architectures

    Get PDF
    Increasing performance requirements in the embedded systems domain have encouraged a drift from singlecore to multicore processors. Cars are an example for complex embedded systems in which the use of multicores continues to grow. The requirements of software components running in modern cars are diverse. On the one hand there are safety-critical tasks like the airbag control, on the other hand tasks which do not have any safety-related requirements at all, for example those controlling the infotainment system. Trends like autonomous driving lead to tasks which are simultaneously safety-critical and computationally complex. To satisfy the requirements of modern embedded applications we developed a dataflow-based runtime environment (RTE) for clustered manycore architectures. The RTE is able to execute dataflow graphs in various redundancy configurations and with different schedulers. We implemented our RTE design on the Kalray Bostan Massively Parallel Processor Array and evaluated all possible configurations for three common computation tasks. To classify the performance of our RTE, we compared the non-redundant graph executions with OpenCL versions of the three applications. The results show that our RTE can come close or even surpass Kalray's OpenCL framework, although maximum performance was not the primary goal of our design

    Reactive Scheduling of DAG Applications on Heterogeneous and Dynamic Distributed Computing Systems

    Get PDF
    Institute for Computing Systems ArchitectureEmerging technologies enable a set of distributed resources across a network to be linked together and used in a coordinated fashion to solve a particular parallel application at the same time. Such applications are often abstracted as directed acyclic graphs (DAGs), in which vertices represent application tasks and edges represent data dependencies between tasks. Effective scheduling mechanisms for DAG applications are essential to exploit the tremendous potential of computational resources. The core issues are that the availability and performance of resources, which are already by their nature heterogeneous, can be expected to vary dynamically, even during the course of an execution. In this thesis, we first consider the problem of scheduling DAG task graphs onto heterogeneous resources with changeable capabilities. We propose a list-scheduling heuristic approach, the Global Task Positioning (GTP) scheduling method, which addresses the problem by allowing rescheduling and migration of tasks in response to significant variations in resource characteristics. We observed from experiments with GTP that in an execution with relatively frequent migration, it may be that, over time, the results of some task have been copied to several other sites, and so a subsequent migrated task may have several possible sources for each of its inputs. Some of these copies may now be more quickly accessible than the original, due to dynamic variations in communication capabilities. To exploit this observation, we extended our model with a Copying Management(CM) function, resulting in a new version, the Global Task Positioning with copying facilities (GTP/c) system. The idea is to reuse such copies, in subsequent migration of placed tasks, in order to reduce the impact of migration cost on makespan. Finally, we believe that fault tolerance is an important issue in heterogeneous and dynamic computational environments as the availability of resources cannot be guaranteed. To address the problem of processor failure, we propose a rewinding mechanism which rewinds the progress of the application to a previous state, thereby preserving the execution in spite of the failed processor(s). We evaluate our mechanisms through simulation, since this allow us to generate repeatable patterns of resource performance variation. We use a standard benchmark set of DAGs, comparing performance against that of competing algorithms from the scheduling literature
    corecore