675 research outputs found

    Improving Routing Efficiency, Fairness, Differentiated Servises And Throughput In Optical Networks

    Get PDF
    Wavelength division multiplexed (WDM) optical networks are rapidly becoming the technology of choice in next-generation Internet architectures. This dissertation addresses the important issues of improving four aspects of optical networks, namely, routing efficiency, fairness, differentiated quality of service (QoS) and throughput. A new approach for implementing efficient routing and wavelength assignment in WDM networks is proposed and evaluated. In this approach, the state of a multiple-fiber link is represented by a compact bitmap computed as the logical union of the bitmaps of the free wavelengths in the fibers of this link. A modified Dijkstra\u27s shortest path algorithm and a wavelength assignment algorithm are developed using fast logical operations on the bitmap representation. In optical burst switched (OBS) networks, the burst dropping probability increases as the number of hops in the lightpath of the burst increases. Two schemes are proposed and evaluated to alleviate this unfairness. The two schemes have simple logic, and alleviate the beat-down unfairness problem without negatively impacting the overall throughput of the system. Two similar schemes to provide differentiated services in OBS networks are introduced. A new scheme to improve the fairness of OBS networks based on burst preemption is presented. The scheme uses carefully designed constraints to avoid excessive wasted channel reservations, reduce cascaded useless preemptions, and maintain healthy throughput levels. A new scheme to improve the throughput of OBS networks based on burst preemption is presented. An analytical model is developed to compute the throughput of the network for the special case when the network has a ring topology and the preemption weight is based solely on burst size. The analytical model is quite accurate and gives results close to those obtained by simulation. Finally, a preemption-based scheme for the concurrent improvement of throughput and burst fairness in OBS networks is proposed and evaluated. The scheme uses a preemption weight consisting of two terms: the first term is a function of the size of the burst and the second term is the product of the hop count times the length of the lightpath of the burst

    A new adaptive burst assembly algorithm for OBS networks considering capacity of control plane

    Get PDF
    Ankara : The Department of Electrical and Electronics Engineering and the Institute of Engineering and Sciences of Bilkent University, 2008.Thesis (Master's) -- Bilkent University, 2008.Includes bibliographical references leaves 55-57.Recent developments in wavelength-division multiplexing (WDM) technology increase the amount of bandwidth available in fiber links by many orders of magnitude. However, this increase in link capacities is limited by the conventional electronic router’s capability. Optical burst switching (OBS) has been proposed as a promising and a short-term solution for switching technology to take advantage of increased capacity of optical links. The congestion in OBS control plane and the adaptive burst assembly algorithms are two important research topics that are among the most effective factors determining the performance of OBS networks. These two problems have been separately studied in the literature so far. It has been shown that contending bursts at a core optical switch in an OBS network may experience unfair loss rates based on their residual off- set times and burst lengths, that are called path length priority effect (PLPE) and burst length priority effect (BLPE), respectively. In this thesis, we propose a new adaptive timer-based burst assembly algorithm (ATBA) which uses loss rate measurements for determining the burstification delays of traffic streams in order to mitigate the undesired effects of PLPE and BLPE. ATBA distributes the burst generation rates of traffic streams at an ingress node such that total rate of generated bursts is constant in order to constrain the congestion in the control plane. Without ATBA, the fairness index drops to 76% when per hop processing delay (PHPD) is increasing. With ATBA, the fairness index drops only to 85% with increasing PHPD. It is also shown that the total goodput of the OBS network improves by 5% compared with the case without ATBA.Çırak, İsmailM.S

    Cycle-accurate evaluation of reconfigurable photonic networks-on-chip

    Get PDF
    There is little doubt that the most important limiting factors of the performance of next-generation Chip Multiprocessors (CMPs) will be the power efficiency and the available communication speed between cores. Photonic Networks-on-Chip (NoCs) have been suggested as a viable route to relieve the off- and on-chip interconnection bottleneck. Low-loss integrated optical waveguides can transport very high-speed data signals over longer distances as compared to on-chip electrical signaling. In addition, with the development of silicon microrings, photonic switches can be integrated to route signals in a data-transparent way. Although several photonic NoC proposals exist, their use is often limited to the communication of large data messages due to a relatively long set-up time of the photonic channels. In this work, we evaluate a reconfigurable photonic NoC in which the topology is adapted automatically (on a microsecond scale) to the evolving traffic situation by use of silicon microrings. To evaluate this system's performance, the proposed architecture has been implemented in a detailed full-system cycle-accurate simulator which is capable of generating realistic workloads and traffic patterns. In addition, a model was developed to estimate the power consumption of the full interconnection network which was compared with other photonic and electrical NoC solutions. We find that our proposed network architecture significantly lowers the average memory access latency (35% reduction) while only generating a modest increase in power consumption (20%), compared to a conventional concentrated mesh electrical signaling approach. When comparing our solution to high-speed circuit-switched photonic NoCs, long photonic channel set-up times can be tolerated which makes our approach directly applicable to current shared-memory CMPs

    Design And Analysis Of Effective Routing And Channel Scheduling For Wavelength Division Multiplexing Optical Networks

    Get PDF
    Optical networking, employing wavelength division multiplexing (WDM), is seen as the technology of the future for the Internet. This dissertation investigates several important problems affecting optical circuit switching (OCS) and optical burst switching (OBS) networks. Novel algorithms and new approaches to improve the performance of these networks through effective routing and channel scheduling are presented. Extensive simulations and analytical modeling have both been used to evaluate the effectiveness of the proposed algorithms in achieving lower blocking probability, better fairness as well as faster switching. The simulation tests were performed over a variety of optical network topologies including the ring and mesh topologies, the U.S. Long-Haul topology, the Abilene high-speed optical network used in Internet 2, the Toronto Metropolitan topology and the European Optical topology. Optical routing protocols previously published in the literature have largely ignored the noise and timing jitter accumulation caused by cascading several wavelength conversions along the lightpath of the data burst. This dissertation has identified and evaluated a new constraint, called the wavelength conversion cascading constraint. According to this constraint, the deployment of wavelength converters in future optical networks will be constrained by a bound on the number of wavelength conversions that a signal can go through when it is switched all-optically from the source to the destination. Extensive simulation results have conclusively demonstrated that the presence of this constraint causes significant performance deterioration in existing routing and wavelength assignment (RWA) algorithms. Higher blocking probability and/or worse fairness have been observed for existing RWA algorithms when the cascading constraint is not ignored. To counteract the negative side effect of the cascading constraint, two constraint-aware routing algorithms are proposed for OCS networks: the desirable greedy algorithm and the weighted adaptive algorithm. The two algorithms perform source routing using link connectivity and the global state information of each wavelength. Extensive comparative simulation results have illustrated that by limiting the negative cascading impact to the minimum extent practicable, the proposed approaches can dramatically decrease the blocking probability for a variety of optical network topologies. The dissertation has developed a suite of three fairness-improving adaptive routing algorithms in OBS networks. The adaptive routing schemes consider the transient link congestion at the moment when bursts arrive and use this information to reduce the overall burst loss probability. The proposed schemes also resolve the intrinsic unfairness defect of existing popular signaling protocols. The extensive simulation results have shown that the proposed schemes generally outperform the popular shortest path routing algorithm and the improvement could be substantial. A two-dimensional Markov chain analytical model has also been developed and used to analyze the burst loss probabilities for symmetrical ring networks. The accuracy of the model has been validated by simulation. Effective proactive routing and preemptive channel scheduling have also been proposed to address the conversion cascading constraint in OBS environments. The proactive routing adapts the fairness-improving adaptive routing mentioned earlier to the environment of cascaded wavelength conversions. On the other hand, the preemptive channel scheduling approach uses a dynamic priority for each burst based on the constraint threshold and the current number of performed wavelength conversions. Empirical results have proved that when the cascading constraint is present, both approaches would not only decrease the burst loss rates greatly, but also improve the transmission fairness among bursts with different hop counts to a large extent

    A congestion aware ant colony optimisation-based routing and wavelength assignment algorithm for transparent flexi-grid optical burst switched networks

    Get PDF
    Optical Burst Switching (OBS) over transparent exi-grid optical networks, is considered a potential solution to the increasing pressure on backbone networks due to the increase in internet use and widespread adoption of various high bandwidth applications. Both technologies allow for more e cient usage of a networks resources. However, transmissions over exi-grid networks are more susceptible to optical impairments than transmissions made over xed-grid networks, and OBS suers from high burst loss due to contention. These issues need to be solved in order to reap the full benets of both technologies. An open issue for OBS whose solution would mitigate both issues is the Routing and Wavelength Assignment (RWA) algorithm. Ant Colony Optimisation (ACO) is a method of interest for solving the RWA problem on OBS networks. This study aims to improve on current dynamic ACO-based solutions to the Routing and Wavelength Assignment problem on transparent exi-grid Optical Burst Switched networks

    On the highly stable performance of loss-free optical burst switching networks

    Get PDF
    Increase of bandwidth demand in data networks, driven by the continuous growth of the Internet and the increase of bandwidth greedy applications, raise the issue of how to support all the bandwidth requirements in the near future. Three optical switching paradigms have been defined and are being investigated: Optical Circuit Switching (OCS); Optical Packet Switching (OPS); and Optical Burst Switching (OBS). Among these paradigms, OBS is seen as the most appropriate solution today. However, OBS suffers from high burst loss as a result of contention in the bufferless mode of operation. This issue was investigated by Coutelen et al., 2009 who proposed the loss-free CAROBS framework whereby signal convertors of the optical signal to the electrical domain ensure electrical buffering. Convertors increase the network price which must be minimized to reduce the installation and operating costs of the CAROBS framework. An analysis capturing convertor requirements, with respect to the number of merging flows and CAROBS node offered load, was carried out. We demonstrated the convertor location significance, which led to an additional investigation of the shared wavelength convertors scenario. Shared wavelength convertors significantly decrease the number of required convertors and show great promise for CAROBS. Based on this study we can design a CAROBS network to contain a combination of simple and complex nodes that include none or some convertors respectively, a vital feature of network throughput efficiency and cost

    Problem of channel utilization and merging flows in buffered optical burst switching networks

    Get PDF
    In the paper authors verify two problems of methods of operational research in optical burst switching. The first problem is at edge node, related to the medium access delay. The second problem is at an intermediate node related to buffering delay. A correction coefficient K of transmission speed is obtained from the first analysis. It is used in to provide a full-featured link of nominal data rate. Simulations of the second problem reveal interesting results. It is not viable to prepare routing and wavelength assignment based on end-to-end delay, i.e. link's length or number of hops, as commonly used in other frameworks (OCS, Ethernet, IP, etc.) nowadays. Other parameters such as buffering probability must be taken into consideration as well. Based on the buffering probability an estimation of the number of optical/electrical converters can be made. This paper concentrates important traffic constraints of buffered optical burst switching. It allows authors to prepare optimization algorithms for regenerators placement in CAROBS networks using methods of operational research

    Architectures and protocols for sub-wavelength optical networks: contributions to connectionless and connection-oriented data transport

    Get PDF
    La ràpida evolució d’Internet i l’àmplia gamma de noves aplicacions (per exemple, multimèdia, videoconferència, jocs en línia, etc.) ha fomentat canvis revolucionaris en la manera com ens comuniquem. A més, algunes d’aquestes aplicacions demanden grans quantitats de recursos d’ample de banda amb diversos requeriments de qualitat de servei (QoS). El desenvolupament de la multiplexació per divisió de longitud d’ona (WDM) en els anys noranta va fer molt rendible la disponibilitat d’ample de banda. Avui dia, les tecnologies de commutació òptica de circuits són predominants en el nucli de la xarxa, les quals permeten la configuració de canals (lightpaths) a través de la xarxa. No obstant això, la granularitat d’aquests canals ocupa tota la longitud d’ona, el que fa que siguin ineficients per a proveir canals de menor ample de banda (sub-longitud d’ona). Segons la comunitat científica, és necessari augmentar la transparència dels protocols, així com millorar l’aprovisionament d’ample de banda de forma dinàmica. Per tal de fer això realitat, és necessari desenvolupar noves arquitectures. La commutació òptica de ràfegues i de paquets (OBS/OPS), són dues de les tecnologies proposades. Aquesta tesi contribueix amb tres arquitectures de xarxa destinades a millorar el transport de dades sub-longitud d’ona. En primer lloc, aprofundim en la naturalesa sense connexió en OBS. En aquest cas, la xarxa incrementa el seu dinamisme a causa de les transmissions a ràfega. A més, les col·lisions entre ràfegues degraden el rendiment de la xarxa fins i tot a càrregues molt baixes. Per fer front a aquestes col·lisions, es proposa un esquema de resolució de col·lisions pro actiu basat en un algorisme d’encaminament i assignació de longitud d’ona (RWA) que balanceja de forma automàtica i distribuïda la càrrega en la xarxa. En aquest protocol, el RWA i la transmissió de ràfegues es basen en l’explotació i exploració de regles de commutació que incorporen informació sobre contencions i encaminament. Per donar suport a aquesta arquitectura, s’utilitzen dos tipus de paquets de control per a l’encaminament de les ràfegues i l’actualització de les regles de commutació, respectivament. Per analitzar els beneficis del nou algorisme, s’utilitzen quatre topologies de xarxa diferents. Els resultats indiquen que el mètode proposat millora en diferents marges la resta d’algorismes RWA en funció de la topologia i sense penalitzar altres paràmetres com el retard extrem a extrem. La segona contribució proposa una arquitectura híbrida sense i orientada a connexió sobre la base d’un protocol de control d’accés al medi (MAC) per a xarxes OBS (DAOBS). El MAC ofereix dos mètodes d’accés: arbitratge de cua (QA) per a la transmissió de ràfegues sense connexió, i pre-arbitratge (PA) per serveis TDM orientats a connexió. Aquesta arquitectura permet una àmplia gamma d’aplicacions sensibles al retard i al bloqueig. Els resultats avaluats a través de simulacions mostren que en l’accés QA, les ràfegues de més alta prioritat tenen garantides zero pèrdues i latències d’accés molt baixes. Pel que fa a l’accés PA, es reporta que la duplicació de la càrrega TDM augmenta en més d’un ordre la probabilitat de bloqueig, però sense afectar en la mateixa mesura les ràfegues sense connexió. En aquest capítol també es tracten dos dels problemes relacionats amb l’arquitectura DAOBS i el seu funcionament. En primer lloc, es proposa un model matemàtic per aproximar el retard d’accés inferior i superior com a conseqüència de l’accés QA. En segon lloc, es formula matemàticament la generació i optimització de les topologies virtuals que suporten el protocol per a l’escenari amb tràfic estàtic. Finalment, l’última contribució explora els beneficis d’una arquitectura de xarxa òptica per temps compartit (TSON) basada en elements de càlcul de camins (PCE) centralitzats per tal d’evitar col·lisions en la xarxa. Aquesta arquitectura permet garantir l’aprovisionament orientat a connexió de canals sub-longitud d’ona. En aquest capítol proposem i simulem tres arquitectures GMPLS/PCE/TSON. A causa del enfocament centralitzat, el rendiment de la xarxa depèn en gran mesura de l’assignació i aprovisionament de les connexions. Amb aquesta finalitat, es proposen diferents algorismes d’assignació de ranures temporals i es comparen amb les corresponents formulacions de programació lineal (ILP) per al cas estàtic. Per al cas de tràfic dinàmic, proposem i avaluem mitjançant simulació diferents heurístiques. Els resultats mostren els beneficis de proporcionar flexibilitat en els dominis temporal i freqüencial a l’hora d’assignar les ranures temporals.The rapid evolving Internet and the broad range of new data applications (e.g., multimedia, video-conference, online gaming, etc.) is fostering revolutionary changes in the way we communicate. In addition, some of these applications demand for unprecedented amounts of bandwidth resources with diverse quality of service (QoS). The development of wavelength division multiplexing (WDM) in the 90's made very cost-effective the availability of bandwidth. Nowadays, optical circuit switching technologies are predominant in the core enabling the set up of lightpaths across the network. However, full-wavelength lightpath granularity is too coarse, which results to be inefficient for provisioning sub-wavelength channels. As remarked by the research community, an open issue in optical networking is increasing the protocol transparency as well as provisioning true dynamic bandwidth allocation at the network level. To this end, new architectures are required. Optical burst/packet switching (OBS/OPS) are two such proposed technologies under investigation. This thesis contributes with three network architectures which aim at improving the sub-wavelength data transport from different perspectives. First, we gain insight into the connectionless nature of OBS. Here, the network dynamics are increased due to the short-lived burst transmissions. Moreover, burst contentions degrade the performance even at very low loads. To cope with them, we propose a proactive resolution scheme by means of a distributed auto load-balancing routing and wavelength assignment (RWA) algorithm for wavelength-continuity constraint networks. In this protocol, the RWA and burst forwarding is based on the exploitation and exploration of switching rule concentration values that incorporate contention and forwarding desirability information. To support such architecture, forward and backward control packets are used in the burst forwarding and updating rules, respectively. In order to analyze the benefits of the new algorithm, four different network topologies are used. Results indicate that the proposed method outperforms the rest of tested RWA algorithms at various margins depending on the topology without penalizing other parameters such as end-to-end delay. The second contribution proposes a hybrid connectionless and connection-oriented architecture based on a medium access control (MAC) protocol for OBS networks (DAOBS). The MAC provides two main access mechanisms: queue arbitrated (QA) for connectionless bursts and pre-arbitrated (PA) for TDM connection-oriented services. Such an architecture allows for a broad range of delay-sensitive applications or guaranteed services. Results evaluated through simulations show that in the QA access mode highest priority bursts are guaranteed zero losses and very low access latencies. Regarding the PA mode, we report that doubling the offered TDM traffic load increases in more than one order their connection blocking, slightly affecting the blocking of other connectionless bursts. In this chapter, we also tackle two of the issues related with the DAOBS architecture and its operation. Firstly, we model mathematically the lower and upper approximations of the access delay as a consequence of the connectionless queue arbitrated access. Secondly, we formulate the generation of the virtual light-tree overlay topology for the static traffic case.Postprint (published version

    Resource allocation and scalability in dynamic wavelength-routed optical networks.

    Get PDF
    This thesis investigates the potential benefits of dynamic operation of wavelength-routed optical networks (WRONs) compared to the static approach. It is widely believed that dynamic operation of WRONs would overcome the inefficiencies of the static allocation in improving resource use. By rapidly allocating resources only when and where required, dynamic networks could potentially provide the same service that static networks but at decreased cost, very attractive to network operators. This hypothesis, however, has not been verified. It is therefore the focus of this thesis to investigate whether dynamic operation of WRONs can save significant number of wavelengths compared to the static approach whilst maintaining acceptable levels of delay and scalability. Firstly, the wavelength-routed optical-burst-switching (WR-OBS) network architecture is selected as the dynamic architecture to be studied, due to its feasibility of implementation and its improved network performance. Then, the wavelength requirements of dynamic WR-OBS are evaluated by means of novel analysis and simulation and compared to that of static networks for uniform and non-uniform traffic demand. It is shown that dynamic WR-OBS saves wavelengths with respect to the static approach only at low loads and especially for sparsely connected networks and that wavelength conversion is a key capability to significantly increase the benefits of dynamic operation. The mean delay introduced by dynamic operation of WR-OBS is then assessed. The results show that the extra delay is not significant as to violate end-to-end limits of time-sensitive applications. Finally, the limiting scalability of WR-OBS as a function of the lightpath allocation algorithm computational complexity is studied. The trade-off between the request processing time and blocking probability is investigated and a new low-blocking and scalable lightpath allocation algorithm which improves the mentioned trade-off is proposed. The presented algorithms and results can be used in the analysis and design of dynamic WRONs
    corecore