3,508 research outputs found

    Multicriteria decision making for enhanced perception-based multimedia communication

    Get PDF
    This paper proposes an approach that integrates technical concerns with user perceptual considerations for intelligent decision making in the construction of tailor-made multimedia communication protocols. Thus, the proposed approach, based on multicriteria decision making (MDM), incorporates not only classical networking considerations, but, indeed, user preferences as well. Furthermore, in keeping with the task-dependent nature consistently identified in multimedia scenarios, the suggested communication protocols also take into account the type of multimedia application that they are transporting. Lastly, this approach also opens the possibility for such protocols to dynamically adapt based on a changing operating environment and user's preferences

    Vector optimization problems with linear criteria over a fuzzy combinatorial set of alternatives.

    Get PDF
    Vector optimization problems over a fuzzy combinatorial set of permutations are investigated. Based on the properties of the convex hull of a fuzzy combinatorial set of permutations, modifications of multicriteria choice methods are developed and substantiated for a fuzzy feasible combinatorial set. Mathematical models of some application problems are presented

    Vector optimization problems with linear criteria over a fuzzy combinatorial set of alternatives.

    Get PDF
    Vector optimization problems over a fuzzy combinatorial set of permutations are investigated. Based on the properties of the convex hull of a fuzzy combinatorial set of permutations, modifications of multicriteria choice methods are developed and substantiated for a fuzzy feasible combinatorial set. Mathematical models of some application problems are presented

    A canonical theory of dynamic decision-making

    Get PDF
    Decision-making behavior is studied in many very different fields, from medicine and eco- nomics to psychology and neuroscience, with major contributions from mathematics and statistics, computer science, AI, and other technical disciplines. However the conceptual- ization of what decision-making is and methods for studying it vary greatly and this has resulted in fragmentation of the field. A theory that can accommodate various perspectives may facilitate interdisciplinary working. We present such a theory in which decision-making is articulated as a set of canonical functions that are sufficiently general to accommodate diverse viewpoints, yet sufficiently precise that they can be instantiated in different ways for specific theoretical or practical purposes. The canons cover the whole decision cycle, from the framing of a decision based on the goals, beliefs, and background knowledge of the decision-maker to the formulation of decision options, establishing preferences over them, and making commitments. Commitments can lead to the initiation of new decisions and any step in the cycle can incorporate reasoning about previous decisions and the rationales for them, and lead to revising or abandoning existing commitments. The theory situates decision-making with respect to other high-level cognitive capabilities like problem solving, planning, and collaborative decision-making. The canonical approach is assessed in three domains: cognitive and neuropsychology, artificial intelligence, and decision engineering

    Multi-Objective and Multi-Attribute Optimisation for Sustainable Development Decision Aiding

    Get PDF
    Optimization is considered as a decision-making process for getting the most out of available resources for the best attainable results. Many real-world problems are multi-objective or multi-attribute problems that naturally involve several competing objectives that need to be optimized simultaneously, while respecting some constraints or involving selection among feasible discrete alternatives. In this Reprint of the Special Issue, 19 research papers co-authored by 88 researchers from 14 different countries explore aspects of multi-objective or multi-attribute modeling and optimization in crisp or uncertain environments by suggesting multiple-attribute decision-making (MADM) and multi-objective decision-making (MODM) approaches. The papers elaborate upon the approaches of state-of-the-art case studies in selected areas of applications related to sustainable development decision aiding in engineering and management, including construction, transportation, infrastructure development, production, and organization management
    corecore