116 research outputs found

    Fused Text Segmentation Networks for Multi-oriented Scene Text Detection

    Full text link
    In this paper, we introduce a novel end-end framework for multi-oriented scene text detection from an instance-aware semantic segmentation perspective. We present Fused Text Segmentation Networks, which combine multi-level features during the feature extracting as text instance may rely on finer feature expression compared to general objects. It detects and segments the text instance jointly and simultaneously, leveraging merits from both semantic segmentation task and region proposal based object detection task. Not involving any extra pipelines, our approach surpasses the current state of the art on multi-oriented scene text detection benchmarks: ICDAR2015 Incidental Scene Text and MSRA-TD500 reaching Hmean 84.1% and 82.0% respectively. Morever, we report a baseline on total-text containing curved text which suggests effectiveness of the proposed approach.Comment: Accepted by ICPR201

    WordFences: Text localization and recognition

    Get PDF
    En col·laboració amb la Universitat de Barcelona (UB) i la Universitat Rovira i Virgili (URV)In recent years, text recognition has achieved remarkable success in recognizing scanned document text. However, word recognition in natural images is still an open problem, which generally requires time consuming post-processing steps. We present a novel architecture for individual word detection in scene images based on semantic segmentation. Our contributions are twofold: the concept of WordFence, which detects border areas surrounding each individual word and a unique pixelwise weighted softmax loss function which penalizes background and emphasizes small text regions. WordFence ensures that each word is detected individually, and the new loss function provides a strong training signal to both text and word border localization. The proposed technique avoids intensive post-processing by combining semantic word segmentation with a voting scheme for merging segmentations of multiple scales, producing an end-to-end word detection system. We achieve superior localization recall on common benchmark datasets - 92% recall on ICDAR11 and ICDAR13 and 63% recall on SVT. Furthermore, end-to-end word recognition achieves state-of-the-art 86% F-Score on ICDAR13
    • …
    corecore