4,587 research outputs found

    Scene Text Eraser

    Full text link
    The character information in natural scene images contains various personal information, such as telephone numbers, home addresses, etc. It is a high risk of leakage the information if they are published. In this paper, we proposed a scene text erasing method to properly hide the information via an inpainting convolutional neural network (CNN) model. The input is a scene text image, and the output is expected to be text erased image with all the character regions filled up the colors of the surrounding background pixels. This work is accomplished by a CNN model through convolution to deconvolution with interconnection process. The training samples and the corresponding inpainting images are considered as teaching signals for training. To evaluate the text erasing performance, the output images are detected by a novel scene text detection method. Subsequently, the same measurement on text detection is utilized for testing the images in benchmark dataset ICDAR2013. Compared with direct text detection way, the scene text erasing process demonstrates a drastically decrease on the precision, recall and f-score. That proves the effectiveness of proposed method for erasing the text in natural scene images

    MTRNet: A Generic Scene Text Eraser

    Full text link
    Text removal algorithms have been proposed for uni-lingual scripts with regular shapes and layouts. However, to the best of our knowledge, a generic text removal method which is able to remove all or user-specified text regions regardless of font, script, language or shape is not available. Developing such a generic text eraser for real scenes is a challenging task, since it inherits all the challenges of multi-lingual and curved text detection and inpainting. To fill this gap, we propose a mask-based text removal network (MTRNet). MTRNet is a conditional adversarial generative network (cGAN) with an auxiliary mask. The introduced auxiliary mask not only makes the cGAN a generic text eraser, but also enables stable training and early convergence on a challenging large-scale synthetic dataset, initially proposed for text detection in real scenes. What's more, MTRNet achieves state-of-the-art results on several real-world datasets including ICDAR 2013, ICDAR 2017 MLT, and CTW1500, without being explicitly trained on this data, outperforming previous state-of-the-art methods trained directly on these datasets.Comment: Presented at ICDAR2019 Conferenc

    MTRNet++: One-stage Mask-based Scene Text Eraser

    Full text link
    A precise, controllable, interpretable and easily trainable text removal approach is necessary for both user-specific and large-scale text removal applications. To achieve this, we propose a one-stage mask-based text inpainting network, MTRNet++. It has a novel architecture that includes mask-refine, coarse-inpainting and fine-inpainting branches, and attention blocks. With this architecture, MTRNet++ can remove text either with or without an external mask. It achieves state-of-the-art results on both the Oxford and SCUT datasets without using external ground-truth masks. The results of ablation studies demonstrate that the proposed multi-branch architecture with attention blocks is effective and essential. It also demonstrates controllability and interpretability.Comment: This paper is under CVIU review (after major revision

    EnsNet: Ensconce Text in the Wild

    Full text link
    A new method is proposed for removing text from natural images. The challenge is to first accurately localize text on the stroke-level and then replace it with a visually plausible background. Unlike previous methods that require image patches to erase scene text, our method, namely ensconce network (EnsNet), can operate end-to-end on a single image without any prior knowledge. The overall structure is an end-to-end trainable FCN-ResNet-18 network with a conditional generative adversarial network (cGAN). The feature of the former is first enhanced by a novel lateral connection structure and then refined by four carefully designed losses: multiscale regression loss and content loss, which capture the global discrepancy of different level features; texture loss and total variation loss, which primarily target filling the text region and preserving the reality of the background. The latter is a novel local-sensitive GAN, which attentively assesses the local consistency of the text erased regions. Both qualitative and quantitative sensitivity experiments on synthetic images and the ICDAR 2013 dataset demonstrate that each component of the EnsNet is essential to achieve a good performance. Moreover, our EnsNet can significantly outperform previous state-of-the-art methods in terms of all metrics. In addition, a qualitative experiment conducted on the SMBNet dataset further demonstrates that the proposed method can also preform well on general object (such as pedestrians) removal tasks. EnsNet is extremely fast, which can preform at 333 fps on an i5-8600 CPU device.Comment: 8 pages, 8 figures, 2 tables, accepted to appear in AAAI 201

    Progressive Scene Text Erasing with Self-Supervision

    Full text link
    Scene text erasing seeks to erase text contents from scene images and current state-of-the-art text erasing models are trained on large-scale synthetic data. Although data synthetic engines can provide vast amounts of annotated training samples, there are differences between synthetic and real-world data. In this paper, we employ self-supervision for feature representation on unlabeled real-world scene text images. A novel pretext task is designed to keep consistent among text stroke masks of image variants. We design the Progressive Erasing Network in order to remove residual texts. The scene text is erased progressively by leveraging the intermediate generated results which provide the foundation for subsequent higher quality results. Experiments show that our method significantly improves the generalization of the text erasing task and achieves state-of-the-art performance on public benchmarks

    Gesture-Based Input for Drawing Schematics on a Mobile Device

    Get PDF
    We present a system for drawing metro map style schematics using a gesture-based interface. This work brings together techniques in gesture recognition on touch-sensitive devices with research in schematic layout of networks. The software allows users to create and edit schematic networks, and provides an automated layout method for improving the appearance of the schematic. A case study using the metro map metaphor to visualize social networks and web site structure is described

    The Remanence of Medieval Media

    Get PDF
    The Remanence of Medieval Media (uncorrected, pre-publication version) For: The Routledge Handbook of Digital Medieval Literature, edited by Jen Boyle and Helen Burgess (2017

    Selective Scene Text Removal

    Full text link
    Scene text removal (STR) is the image transformation task to remove text regions in scene images. The conventional STR methods remove all scene text. This means that the existing methods cannot select text to be removed. In this paper, we propose a novel task setting named selective scene text removal (SSTR) that removes only target words specified by the user. Although SSTR is a more complex task than STR, the proposed multi-module structure enables efficient training for SSTR. Experimental results show that the proposed method can remove target words as expected.Comment: 12 pages, 8 figures, Accepted at the 34th British Machine Vision Conferenc

    A game engine designed to simplify 2D video game development

    Get PDF
    In recent years, the increasing popularity of casual games for mobile and web has promoted the development of new editors to make video games easier to create. The development of these interactive applications is on its way to becoming democratized, so that anyone who is interested, without any advanced knowledge of programming, can create them for devices such as mobile phones or consoles. Nevertheless, most game development environments rely on the traditional way of programming and need advanced technical skills, even despite today’s improvements. This paper presents a new 2D game engine that reduces the complexity of video game development processes. The game specification has been simplified, decreasing the complexity of the engine architecture and introducing a very easy-to-use editing environment for game creation. The engine presented here allows the behaviour of the game objects to be defined using a very small set of conditions and actions, without the need to use complex data structures. Some experiments have been designed in order to validate its ease of use and its capacity in the creation of a wide variety of games. To test it, users with little experience in programming have developed arcade games using the presented environment as a proof of its easiness with respect to other comparable software. Results obtained endorse the concept and the hypothesis of its easiness of use and demonstrate the engine potential
    • …
    corecore