336 research outputs found

    The Virtual Armory: Virtual Jousting Simulator

    Get PDF
    This project presents a sport of the past using current technologies to recreate the experience of jousting for visitors to the Higgins Armory Museum. Through collaboration with museum staff, intensive historical research, and a rigorous, iterative software development cycle, the project team developed a jousting simulation using technologies that incorporated Java, Flash, TCP/IP sockets, Bluetooth and XML. Nintendo Wii remotes, embedded in a lance stub and to horse reins, were also used to further simulate realism in the user-application interface

    Mitigation Of Motion Sickness Symptoms In 360 Degree Indirect Vision Systems

    Get PDF
    The present research attempted to use display design as a means to mitigate the occurrence and severity of symptoms of motion sickness and increase performance due to reduced “general effects” in an uncoupled motion environment. Specifically, several visual display manipulations of a 360° indirect vision system were implemented during a target detection task while participants were concurrently immersed in a motion simulator that mimicked off-road terrain which was completely separate from the target detection route. Results of a multiple regression analysis determined that the Dual Banners display incorporating an artificial horizon (i.e., AH Dual Banners) and perceived attentional control significantly contributed to the outcome of total severity of motion sickness, as measured by the Simulator Sickness Questionnaire (SSQ). Altogether, 33.6% (adjusted) of the variability in Total Severity was predicted by the variables used in the model. Objective measures were assessed prior to, during and after uncoupled motion. These tests involved performance while immersed in the environment (i.e., target detection and situation awareness), as well as postural stability and cognitive and visual assessment tests (i.e., Grammatical Reasoning and Manikin) both before and after immersion. Response time to Grammatical Reasoning actually decreased after uncoupled motion. However, this was the only significant difference of all the performance measures. Assessment of subjective workload (as measured by NASA-TLX) determined that participants in Dual Banners display conditions had a significantly lower level of perceived physical demand than those with Completely Separated display designs. Further, perceived iv temporal demand was lower for participants exposed to conditions incorporating an artificial horizon. Subjective sickness (SSQ Total Severity, Nausea, Oculomotor and Disorientation) was evaluated using non-parametric tests and confirmed that the AH Dual Banners display had significantly lower Total Severity scores than the Completely Separated display with no artificial horizon (i.e., NoAH Completely Separated). Oculomotor scores were also significantly different for these two conditions, with lower scores associated with AH Dual Banners. The NoAH Completely Separated condition also had marginally higher oculomotor scores when compared to the Completely Separated display incorporating the artificial horizon (AH Completely Separated). There were no significant differences of sickness symptoms or severity (measured by self-assessment, postural stability, and cognitive and visual tests) between display designs 30- and 60-minutes post-exposure. Further, 30- and 60- minute post measures were not significantly different from baseline scores, suggesting that aftereffects were not present up to 60 minutes post-exposure. It was concluded that incorporating an artificial horizon onto the Dual Banners display will be beneficial in mitigating symptoms of motion sickness in manned ground vehicles using 360° indirect vision systems. Screening for perceived attentional control will also be advantageous in situations where selection is possible. However, caution must be made in generalizing these results to missions under terrain or vehicle speed different than what is used for this study, as well as those that include a longer immersion time

    Video Guidance, Landing, and Imaging system (VGLIS) for space missions

    Get PDF
    The feasibility of an autonomous video guidance system that is capable of observing a planetary surface during terminal descent and selecting the most acceptable landing site was demonstrated. The system was breadboarded and "flown" on a physical simulator consisting of a control panel and monitor, a dynamic simulator, and a PDP-9 computer. The breadboard VGLIS consisted of an image dissector camera and the appropriate processing logic. Results are reported

    Mobility Across Dynamic Terrain - And Engineering Change Proposal To The Dynamic Terrain Testbed Project: Final Report

    Get PDF
    Report summarizes the vehicle mobility and bridge simulation studies conducted by the Institute for Simulation and Training

    The Industrial Track of EuroVR 2018:Proceedings of the 15th Annual EuroVR Conference

    Get PDF

    The Industrial Track of EuroVR 2018:Proceedings of the 15th Annual EuroVR Conference

    Get PDF

    The Plant Simulator as viable means to prevent and manage risk through competencies management: Experiment results

    Get PDF
    Making decisions and managing competences in complex systems is a challenging task to accomplish. Specifically, the process industry is known for its complexity and sensitivity to critical procedures. Recent disasters like the ‘‘Deepwater Horizon” (2010, 11 fatalities), BP Texas City (2005, 15 fatalities), and AZF Toulouse (2001, 29 fatalities), clearly showed the risk to which we are all exposed. The increasing complexity of processes, due to the simultaneous escalation of automation, optimisation and intensification processes (followed to face globalisation challenges), are moving the attention to the management of abnormal situations, which are even more complex in nature and frequent. This increasing complexity, coupled with the fact that abnormal situations may lead to irreversible losses, is imposing the adoption of adequate approaches and tools that allow for better learning and properly managing abnormal situations. The paper presents a simulation-enabled, experiment-based approach that can be used to prevent and manage risk through competencies management. More specifically, the paper presents the results of the first experiment campaign performed in a Plant Simulator (PS), the first known in the process industry domain, and shows the efficacy of using Immersive Virtual Environments (IVE) both to make decisions and to train teams (not just single operators). The experiment results presented in the paper show the effectiveness of IVE to increase the competencies and train operators and managers. In addition, they explain how conveniently the data collected by means of the PS can be used for making daily decisions to better prevent and manage risks

    Video guidance, landing, and imaging systems

    Get PDF
    The adaptive potential of video guidance technology for earth orbital and interplanetary missions was explored. The application of video acquisition, pointing, tracking, and navigation technology was considered to three primary missions: planetary landing, earth resources satellite, and spacecraft rendezvous and docking. It was found that an imaging system can be mechanized to provide a spacecraft or satellite with a considerable amount of adaptability with respect to its environment. It also provides a level of autonomy essential to many future missions and enhances their data gathering ability. The feasibility of an autonomous video guidance system capable of observing a planetary surface during terminal descent and selecting the most acceptable landing site was successfully demonstrated in the laboratory. The techniques developed for acquisition, pointing, and tracking show promise for recognizing and tracking coastlines, rivers, and other constituents of interest. Routines were written and checked for rendezvous, docking, and station-keeping functions

    The Plant Simulator as viable means to prevent and manage risk through competencies management: Experiment results

    Get PDF
    AbstractMaking decisions and managing competences in complex systems is a challenging task to accomplish. Specifically, the process industry is known for its complexity and sensitivity to critical procedures. Recent disasters like the “Deepwater Horizon” (2010, 11 fatalities), BP Texas City (2005, 15 fatalities), and AZF Toulouse (2001, 29 fatalities), clearly showed the risk to which we are all exposed. The increasing complexity of processes, due to the simultaneous escalation of automation, optimisation and intensification processes (followed to face globalisation challenges), are moving the attention to the management of abnormal situations, which are even more complex in nature and frequent. This increasing complexity, coupled with the fact that abnormal situations may lead to irreversible losses, is imposing the adoption of adequate approaches and tools that allow for better learning and properly managing abnormal situations. The paper presents a simulation-enabled, experiment-based approach that can be used to prevent and manage risk through competencies management. More specifically, the paper presents the results of the first experiment campaign performed in a Plant Simulator (PS), the first known in the process industry domain, and shows the efficacy of using Immersive Virtual Environments (IVE) both to make decisions and to train teams (not just single operators).The experiment results presented in the paper show the effectiveness of IVE to increase the competencies and train operators and managers. In addition, they explain how conveniently the data collected by means of the PS can be used for making daily decisions to better prevent and manage risks

    GROUND VEHICLE DRIVING AIDS: ASSESSING DRIVER WORKLOAD AND PERFORMANCE IN DEGRADED VISUAL ENVIRONMENTS

    Get PDF
    With degraded visual environments being a current priority to the Army, several research programs have been initiated to develop a complete sensor-to-soldier systems to allow operators to see through DVE conditions while conducting ground vehicle tactical operations. To enable indirect-driving maneuverability and threat detection in degraded visual environments (DVEs), CCDC’s ground DVE program developed and tested a range of sensors and driver aid display systems. Six candidate driving aids were identified and tested in three simulator studies and two field tests to examine the effect of driving aids on driver workload and performance in different visibility conditions. The simulator-based testing revealed human factors issues such as the importance of the symbology of the aids used and how obstacles should be presented when designing individual displays. Soldiers were generally accepting of the overall gDVE system in field testing with no costs or benefits revealed using the driving aids. Before future development of the driving aids, a more human-centered design process must be pursued to optimize the human-system interaction to design driving aids that help performance and lower workload in degraded visual environments
    • …
    corecore