708 research outputs found

    KinD-LCE Curve Estimation And Retinex Fusion On Low-Light Image

    Full text link
    Low-light images often suffer from noise and color distortion. Object detection, semantic segmentation, instance segmentation, and other tasks are challenging when working with low-light images because of image noise and chromatic aberration. We also found that the conventional Retinex theory loses information in adjusting the image for low-light tasks. In response to the aforementioned problem, this paper proposes an algorithm for low illumination enhancement. The proposed method, KinD-LCE, uses a light curve estimation module to enhance the illumination map in the Retinex decomposed image, improving the overall image brightness. An illumination map and reflection map fusion module were also proposed to restore the image details and reduce detail loss. Additionally, a TV(total variation) loss function was applied to eliminate noise. Our method was trained on the GladNet dataset, known for its diverse collection of low-light images, tested against the Low-Light dataset, and evaluated using the ExDark dataset for downstream tasks, demonstrating competitive performance with a PSNR of 19.7216 and SSIM of 0.8213.Comment: Accepted by Signal, Image and Video Processin

    Fearless Luminance Adaptation: A Macro-Micro-Hierarchical Transformer for Exposure Correction

    Full text link
    Photographs taken with less-than-ideal exposure settings often display poor visual quality. Since the correction procedures vary significantly, it is difficult for a single neural network to handle all exposure problems. Moreover, the inherent limitations of convolutions, hinder the models ability to restore faithful color or details on extremely over-/under- exposed regions. To overcome these limitations, we propose a Macro-Micro-Hierarchical transformer, which consists of a macro attention to capture long-range dependencies, a micro attention to extract local features, and a hierarchical structure for coarse-to-fine correction. In specific, the complementary macro-micro attention designs enhance locality while allowing global interactions. The hierarchical structure enables the network to correct exposure errors of different scales layer by layer. Furthermore, we propose a contrast constraint and couple it seamlessly in the loss function, where the corrected image is pulled towards the positive sample and pushed away from the dynamically generated negative samples. Thus the remaining color distortion and loss of detail can be removed. We also extend our method as an image enhancer for low-light face recognition and low-light semantic segmentation. Experiments demonstrate that our approach obtains more attractive results than state-of-the-art methods quantitatively and qualitatively.Comment: Accepted by ACM MM 202
    • …
    corecore