2,410 research outputs found

    Graph Laplacian for Image Anomaly Detection

    Get PDF
    Reed-Xiaoli detector (RXD) is recognized as the benchmark algorithm for image anomaly detection; however, it presents known limitations, namely the dependence over the image following a multivariate Gaussian model, the estimation and inversion of a high-dimensional covariance matrix, and the inability to effectively include spatial awareness in its evaluation. In this work, a novel graph-based solution to the image anomaly detection problem is proposed; leveraging the graph Fourier transform, we are able to overcome some of RXD's limitations while reducing computational cost at the same time. Tests over both hyperspectral and medical images, using both synthetic and real anomalies, prove the proposed technique is able to obtain significant gains over performance by other algorithms in the state of the art.Comment: Published in Machine Vision and Applications (Springer

    Subspace discovery for video anomaly detection

    Get PDF
    PhDIn automated video surveillance anomaly detection is a challenging task. We address this task as a novelty detection problem where pattern description is limited and labelling information is available only for a small sample of normal instances. Classification under these conditions is prone to over-fitting. The contribution of this work is to propose a novel video abnormality detection method that does not need object detection and tracking. The method is based on subspace learning to discover a subspace where abnormality detection is easier to perform, without the need of detailed annotation and description of these patterns. The problem is formulated as one-class classification utilising a low dimensional subspace, where a novelty classifier is used to learn normal actions automatically and then to detect abnormal actions from low-level features extracted from a region of interest. The subspace is discovered (using both labelled and unlabelled data) by a locality preserving graph-based algorithm that utilises the Graph Laplacian of a specially designed parameter-less nearest neighbour graph. The methodology compares favourably with alternative subspace learning algorithms (both linear and non-linear) and direct one-class classification schemes commonly used for off-line abnormality detection in synthetic and real data. Based on these findings, the framework is extended to on-line abnormality detection in video sequences, utilising multiple independent detectors deployed over the image frame to learn the local normal patterns and infer abnormality for the complete scene. The method is compared with an alternative linear method to establish advantages and limitations in on-line abnormality detection scenarios. Analysis shows that the alternative approach is better suited for cases where the subspace learning is restricted on the labelled samples, while in the presence of additional unlabelled data the proposed approach using graph-based subspace learning is more appropriate

    Techniques for automatic large scale change analysis of temporal multispectral imagery

    Get PDF
    Change detection in remotely sensed imagery is a multi-faceted problem with a wide variety of desired solutions. Automatic change detection and analysis to assist in the coverage of large areas at high resolution is a popular area of research in the remote sensing community. Beyond basic change detection, the analysis of change is essential to provide results that positively impact an image analyst\u27s job when examining potentially changed areas. Present change detection algorithms are geared toward low resolution imagery, and require analyst input to provide anything more than a simple pixel level map of the magnitude of change that has occurred. One major problem with this approach is that change occurs in such large volume at small spatial scales that a simple change map is no longer useful. This research strives to create an algorithm based on a set of metrics that performs a large area search for change in high resolution multispectral image sequences and utilizes a variety of methods to identify different types of change. Rather than simply mapping the magnitude of any change in the scene, the goal of this research is to create a useful display of the different types of change in the image. The techniques presented in this dissertation are used to interpret large area images and provide useful information to an analyst about small regions that have undergone specific types of change while retaining image context to make further manual interpretation easier. This analyst cueing to reduce information overload in a large area search environment will have an impact in the areas of disaster recovery, search and rescue situations, and land use surveys among others. By utilizing a feature based approach founded on applying existing statistical methods and new and existing topological methods to high resolution temporal multispectral imagery, a novel change detection methodology is produced that can automatically provide useful information about the change occurring in large area and high resolution image sequences. The change detection and analysis algorithm developed could be adapted to many potential image change scenarios to perform automatic large scale analysis of change

    Recent Developments in Video Surveillance

    Get PDF
    With surveillance cameras installed everywhere and continuously streaming thousands of hours of video, how can that huge amount of data be analyzed or even be useful? Is it possible to search those countless hours of videos for subjects or events of interest? Shouldn’t the presence of a car stopped at a railroad crossing trigger an alarm system to prevent a potential accident? In the chapters selected for this book, experts in video surveillance provide answers to these questions and other interesting problems, skillfully blending research experience with practical real life applications. Academic researchers will find a reliable compilation of relevant literature in addition to pointers to current advances in the field. Industry practitioners will find useful hints about state-of-the-art applications. The book also provides directions for open problems where further advances can be pursued
    • …
    corecore